首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
It has been proposed that the plasma membrane of many cell types contains cholesterol-sphingolipid-rich microdomains. Here, we analyze the role of these microdomains in promoting oligomerization of the bacterial pore-forming toxin aerolysin. Aerolysin binds to cells, via glycosyl phosphatidylinositol-anchored receptors, as a hydrophilic soluble protein that must polymerize into an amphipathic ring-like complex to form a pore. We first show that oligomerization can occur at >10(5)-fold lower toxin concentration at the surface of living cells than in solution. Our observations indicate that it is not merely the number of receptors on the target cell that is important for toxin sensitivity, but their ability to associate transiently with detergent resistant microdomains. Oligomerization appears to be promoted by the fact that the toxin bound to its glycosyl phosphatidylinositol-anchored receptors, can be recruited into these microdomains, which act as concentration devices.  相似文献   

2.
Aerolysin is a channel-forming toxin secreted by Aeromonas spp. that binds to glycosyl phosphatidylinositol (GPI)-anchored proteins, such as Thy-1, on sensitive target cells. Receptor binding is followed first by oligomerization of the toxin and then by insertion of the oligomers into the membrane to form stable channels that disrupt the permeability barrier. Human immunodeficiency virus type 1 (HIV-1) produced from T cells is known to incorporate Thy-1 and other GPI-anchored proteins into its membrane. Here, we show that aerolysin is capable of neutralizing HIV-1 in a dose-dependent manner and that neutralization depends upon the presence of these proteins in the viral envelope. Pretreatment with phosphatidylinositol-specific phospholipase C to remove GPI-anchored proteins greatly reduced HIV-1 sensitivity to the toxin, and virus originating from a mutant cell line that lacks GPI-anchored proteins was not neutralized. Aerolysin variants with single amino acid changes that prevent oligomerization or insertion of the toxin were unable to inactivate the virus, implying that channel formation is necessary for neutralization to occur. These findings represent the first evidence that a pathogenic human virus can be neutralized by a bacterial toxin.  相似文献   

3.
Bacterial autotransporters consist of an N-terminal 'passenger domain' that is transported into the extracellular space by an unknown mechanism and a C-terminal 'β-domain' that forms a β-barrel in the outer membrane. Recent studies have revealed that fully assembled autotransporters have an unusual architecture in which a small passenger domain segment traverses the pore formed by the β-domain. It is unclear, however, whether this configuration forms prior to passenger domain translocation or results from the translocation of the passenger domain through the β-domain pore. By examining the accessibility of tobacco etch virus protease sites and single-cysteine residues in the passenger domain of the Escherichia coli O157:H7 autotransporter EspP at different stages of protein biogenesis, we identified a novel pre-translocation intermediate whose topology resembles that of the fully assembled protein. This intermediate was isolated in the periplasm in cell fractionation experiments. The data strongly suggest that the EspP β-domain and an embedded polypeptide segment are integrated into the outer membrane as a single pre-formed unit. The data also provide indirect evidence that at least some outer membrane proteins acquire considerable tertiary structure prior to their membrane integration.  相似文献   

4.
Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.  相似文献   

5.
The distribution and phenotypic activity of the genes encoding for serine protease, glycerophospholipid-cholesterol acyltransferase, lipases, aerolysin/hemolysin and DNases were investigated in 234 isolates identified by 16S rDNA-RFLP representing all the species of Aeromonas. The former three genes were found to be highly conserved among the genus. Aerolysin/hemolysin and DNase genes and β-hemolytic activity were significantly more frequent in clinical than in environmental isolates. Aerolysin/hemolysin and serine protease genes were present in all β-hemolytic strains supporting serine protease as possibly important for the activation of the former gene. The high prevalence of virulence factors in clinical isolates indicates that they may play a role in the mechanisms of pathogenesis of these microorganisms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
β-Barrel pore-forming toxins (β-PFT), a large family of bacterial toxins, are generally secreted as water-soluble monomers and can form oligomeric pores in membranes following proteolytic cleavage and interaction with cell surface receptors. Monalysin has been recently identified as a β-PFT that contributes to the virulence of Pseudomonas entomophila against Drosophila. It is secreted as a pro-protein that becomes active upon cleavage. Here we report the crystal and cryo-electron microscopy structure of the pro-form of Monalysin as well as the crystal structures of the cleaved form and of an inactive mutant lacking the membrane-spanning region. The overall structure of Monalysin displays an elongated shape, which resembles those of β-pore-forming toxins, such as Aerolysin, but is devoid of a receptor-binding domain. X-ray crystallography, cryo-electron microscopy, and light-scattering studies show that pro-Monalysin forms a stable doughnut-like 18-mer complex composed of two disk-shaped nonamers held together by N-terminal swapping of the pro-peptides. This observation is in contrast with the monomeric pro-form of the other β-PFTs that are receptor-dependent for membrane interaction. The membrane-spanning region of pro-Monalysin is fully buried in the center of the doughnut, suggesting that upon cleavage of pro-peptides, the two disk-shaped nonamers can, and have to, dissociate to leave the transmembrane segments free to deploy and lead to pore formation. In contrast with other toxins, the delivery of 18 subunits at once, nearby the cell surface, may be used to bypass the requirement of receptor-dependent concentration to reach the threshold for oligomerization into the pore-forming complex.  相似文献   

7.
It has been previously reported that the three-dimensional structures of the NAD-binding and catalytic site of bacterial toxins with ADP-ribosylating activity are superimposable, and that the key amino acids for the enzymatic activity are conserved. The model includes an NAD-binding and catalytic site formed by an α-helix bent over a β-strand, surrounded by two β-strands bearing a Glu and a His, or Arg, that are required for catalysis. We show here that the model can be extended to comprise all proteins with ADP-ribosylating activity known to date, including all eukaryotic mono- and poly-ADP-ribosyltransferases, the bacterial ADP-ribosylating enzymes which do not have toxic activity, and the analogous enzymes encoded by T-even bacteriophages. We show that, in addition to the common Glu and Arg/His amino acids previously identified, the conserved motifs can be extended as follows: (i) the Arg/His motif is usually arom-His/Arg (where 'arom' is an aromatic residue); (ii) in the sequences of the CT group the β-strand forming part of the 'scaffold' of the catalytic cavity has an arom-ph-Ser-Thr-Ser-ph consensus (where 'ph' represents a hydrophobic residue); and (iii) the motif centred in the key glutamic residue is Glu/Gln-X-Glu; while (iv) in the sequences of the DT group the NAD-binding motif is Tyr-X10-Tyr. We believe that the model proposed not only accounts for all ADP-ribosylating proteins known to date, but it is likely to fit other enzymes (currently being analysed) which possess such an activity.  相似文献   

8.
Non‐proton pumping type II NADH dehydrogenase (NDH‐2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH‐2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH‐2 enzyme at 2.5 Å resolution from Caldalkalibacillus thermarum. The NDH‐2 structure reveals a homodimeric organization that has a unique dimer interface. NDH‐2 is localized to the cytoplasmic membrane by two separated C‐terminal membrane‐anchoring regions that are essential for membrane localization and FAD binding, but not NDH‐2 dimerization. Comparison of bacterial NDH‐2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non‐overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH‐2 structure establishes a framework for the structure‐based design of small‐molecule inhibitors.  相似文献   

9.
By challenging the efficiency of some of our most useful antimicrobial weapons, bacterial antibiotic resistance is becoming an increasingly worrying clinical problem. A good antibiotic is expected to exhibit a high affinity for its target and to reach it rapidly, while escaping chemical modification by inactivating enzymes and elimination by efflux mechanisms. A study of the behaviour of a β-lactamase-overproducing mutant of Enterobacter cloacae in the presence of several penicillins and cephalosporins showed that the minimum inhibitory concentration (MIC) values for several compounds were practically independent of the sensitivity of the target penicillin binding protein (PBP), even for poor β-lactamase substrates. This apparent paradox was explained by analysing the equation that relates the antibiotic concentration in the periplasm to that in the external medium. Indeed, under conditions that are encountered frequently in clinical isolates, the factor characterizing the PBP sensitivity became negligible. The conclusions can be extended to all antibiotics that are sensitive to enzymatic inactivation and efflux mechanisms and must overcome permeability barriers. It would be a grave mistake to neglect these considerations in the design of future antibacterial chemotherapeutic agents.  相似文献   

10.
Abstract— β-Bungarotoxin, a presynaptic neurotoxin isolated from the venom of Bungarus multicinctus , has been shown to initially cause an increase in the frequency of miniature endplate potentials and subsequently block neuromuscular transmission by inhibiting nerve impulse induced release of acetylcholine. In rat brain synaptosomes it causes a Ca2+-dependent release of acetylcholine together, with a strong inhibition of the high affinity choline uptake system. In this report we demonstrate that β-bungarotoxin acts as a phospholipase A2 (phosphatide 2-acyl hydrolase, EC 3.1.1.4), liberating fatty acids from synaptic membrane phospholipids. It also exhibits a striking similarity in a number of neurochemical properties with that of a purified phospholipase A2 from Naja naja siamensis. In addition, both agents produce a marked depolarization of synaptosomal preparations as measured by a fluorescent dye. We propose that disruption of the membrane phospholipids by phospholipase activity can lead to depolarization of the synaptosomal preparation which promotes both transmitter release and inhibition of the energy-dependent high affinity choline uptake system. With this decreased supply of choline, the acetylcholine content of the cell would be gradually depleted leading to a decrease in transmission.  相似文献   

11.
Aerolysin is a channel-forming bacterial toxin that binds to glycosylphosphatidylinositol (GPI) anchors on host cell-surface structures. The nature of the receptors and the location of the receptor-binding sites on the toxin molecule were investigated using surface plasmon resonance. Aerolysin bound to the GPI-anchored proteins Thy-1, variant surface glycoprotein, and contactin with similar rate constants and affinities. Enzymatic removal of N-linked sugars from Thy-1 did not affect toxin binding, indicating that these sugars are not involved in the high affinity interaction with aerolysin. Aerolysin is a bilobal protein, and both lobes were shown to be required for optimal binding. The large lobe by itself bound Thy-1 with an affinity that was at least 10-fold weaker than that of the whole toxin, whereas the small lobe bound the GPI-anchored protein at least 1000-fold more weakly than the intact toxin. Mutation analyses provided further evidence that both lobes were involved in GPI anchor binding, with certain single amino acid substitutions in either domain leading to reductions in affinity of as much as 100-fold. A variant with single amino acid substitutions in both lobes of the protein was completely unable to bind the receptor. The membrane protein glycophorin, which is heavily glycosylated but not GPI-anchored, bound weakly to immobilized proaerolysin, suggesting that interactions with cell-surface carbohydrate structures other than GPI anchors may partially mediate toxin binding to host cells.  相似文献   

12.
The evidence accumulated to date indicates that 1,3-β-glucan synthase (EC 2.3.1.12) and 1,4-β-glucan synthase (EC 2.4.1.12) are regulated by different effectors. Further that the same synthase has different effectors, depending upon its presence in green plants, fungi, and bacteria. Synthases from plants require divalent cations and β-linked glucosides whereas fungal enzymes require neither cations nor β-glucosides, but most require nucleoside triphosphates for activation. Two endogenous effectors have been characterized and shown to produce activation in vitro. One is 3',5'-cyclic diguanylic acid that is the activator of cellulose synthase in bacteria. The other is a β-linked glucosyl dioleoyl diglyceride from mung bean, capable of activating synthases that produce both β-(1–3) and β-(1–4) products. The results of product analysis of the β-linked glucoside activated reaction suggest that the synthesis of (1–3) and (1–4) glucosyl linkages may share a common enzyme in plants. All synthases utilize uridine 5'-diphosphoglucose (UDPG) and are associated with the plasma membrane. Efforts to solubilize the synthases from cellular fractions enriched in plasma membranes have been generally successful. The purification of the soluble enzymes, however, remains a major obstacle to the full understanding of their regulation.  相似文献   

13.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.  相似文献   

14.
ABSTRACT. It has long been thought that the cyst form of Pneumocystis carinii , which can resist host defenses and antimicrobial drugs, is responsible for relapses of P. carinii pneumonia. The thick wall of the cyst is immunogenic and rich in glucosyl/mannosyl and N-acetyl-D-glucosamine residues. In this study we have demonstrated the presence of a hitherto unreported outer membrane in the cyst wall of P. carinii . This membrane was detected by a combination of techniques, including transmission electron microscopy, freeze-fracture electron microscopy, and membrane labeling with fluorescent lipid analogs following treatment of P. carinii cysts from infected rats for 30 min with Zymolyase, a β-1–3 glucanase. As in gram-negative bacteria and blue-green algae, this 2nd membrane may have an important role in osmoregulation and nutrient utilization; it may also mediate the interaction of P. carinii with its host and serve as a target for drug therapy.  相似文献   

15.
Structural and mutational analysis of the cell division protein FtsQ   总被引:1,自引:0,他引:1  
Bacterial cytokinesis requires the divisome, a complex of proteins that co-ordinates the invagination of the cytoplasmic membrane, inward growth of the peptidoglycan layer and the outer membrane. Assembly of the cell division proteins is tightly regulated and the order of appearance at the future division site is well organized. FtsQ is a highly conserved component of the divisome among bacteria that have a cell wall, where it plays a central role in the assembly of early and late cell division proteins. Here, we describe the crystal structure of the major, periplasmic domain of FtsQ from Escherichia coli and Yersinia enterocolitica . The crystal structure reveals two domains; the α-domain has a striking similarity to polypeptide transport-associated (POTRA) domains and the C-terminal β-domain forms an extended β-sheet overlaid by two, slightly curved α-helices. Mutagenesis experiments demonstrate that two functions of FtsQ, localization and recruitment, occur in two separate domains. Proteins that localize FtsQ need the second β-strand of the POTRA domain and those that are recruited by FtsQ, like FtsL/FtsB, require the surface formed by the tip of the last α-helix and the two C-terminal β-strands. Both domains act together to accomplish the role of FtsQ in linking upstream and downstream cell division proteins within the divisome.  相似文献   

16.
Crystallographic studies of the anthrax lethal toxin   总被引:1,自引:0,他引:1  
Anthrax lethal toxin comprises two proteins: protective antigen (PA; MW 83 kDa) and lethal factor (LF; MW 87 kDa). We have recently determined the crystal structure of the 735-residue PA in its monomeric and heptameric forms ( Petosa et al . 1997 ). It bears no resemblance to other bacterial toxins of known three-dimensional structure, and defines a new structural class which includes homologous toxins from other Gram-positive bacteria. We have proposed a model of membrane insertion in which the water-soluble heptamer undergoes a substantial pH-induced conformational change involving the creation of a 14-stranded β-barrel. Recent work by Collier's group ( Benson et al . 1998 ) lends strong support to our model of membrane insertion. 'Lethal factor' is the catalytic component of anthrax lethal toxin. It binds to the surface of the cell-bound PA heptamer and, following endocytosis and acidification of the endosome, translocates to the cytosol. We have made substantial progress towards an atomic resolution crystal structure of LF. Progress towards a structure of the 7:7 translocation complex between the PA heptamer and LF will also be discussed.  相似文献   

17.
18.
γ-Secretase is an unconventional aspartyl protease that processes many type 1 membrane proteins within the lipid bilayer. Because its cleavage of amyloid-β precursor protein generates the amyloid-β protein (Aβ) of Alzheimer's disease, partially inhibiting γ-secretase is an attractive therapeutic strategy, but the structure of the protease remains poorly understood. We recently used electron microscopy and single particle image analysis on the purified enzyme to generate the first 3D reconstruction of γ-secretase, but at low resolution (15 Å). The limited amount of purified γ-secretase that can be produced using currently available cell lines and procedures has prevented the achievement of a high resolution crystal structure by X-ray crystallography or 2D crystallization. We report here the generation and characterization of a new mammalian cell line (S-20) that overexpresses strikingly high levels of all four γ-secretase components (presenilin, nicastrin, Aph-1 and Pen-2). We then used these cells to develop a rapid protocol for the high-grade purification of proteolytically active γ-secretase. The cells and purification methods detailed here provide a key step towards crystallographic studies of this ubiquitous enzyme.  相似文献   

19.
The outer membrane protein, intimin ( eae ), which mediates bacterial attachment to epithelial cells, is associated with enteropathogenic Escherichia coli and some Shiga toxin-producing E. coli . The eae subtype of E. coli strains isolated from healthy cattle and sheep was identified using a rapid PCR-restriction fragment length polymorphism (RFLP) method to produce profiles that were compared with those generated in silico . The 139 eae -positive E. coli strains were separated into 11 different PCR-RFLP profiles. The most common eae PCR-RFLP type was β (23.7%), followed by ζ (20.1%), θ (16.5%), ι (12.2%), κ (8.6%), ɛ (7.2%), γ (2.9%), ν and β2 (2.2%) and ι2 (1.4%). Four isolates did not yield a PCR-RFLP amplification product but complete sequencing of the eae gene matched subtype ρ. Two different eae variants were isolated from the same swab from 18 different animals and subtype ι was the most 'promiscuous', being isolated with four other eae subtypes from seven separate animals. None of the eae -positive STEC were subtype γ, which is associated with STEC serogroup O157. This method allowed the rapid identification of eae subtypes and indicates that forage-fed animals possessed a wide diversity of bacterial eae subtypes with a low frequency of eae subtype γ.  相似文献   

20.
A rapid and direct fluorogenic assay was used to detect Escherichia coli in urine. Most clinical isolates of E. coli produce β-glucuronidase, whereas almost all other enterobacteria lack the enzyme. Spectrofluorimetric assay of β-glucuronidase, without previous induction, was performed on growing and starved uropathogenic E. coli in artificial urine. The presence of 103 cfu ml-1 of E. coli in urine was detected by β-glucuronidase activity in less than 1 h. These results indicate that β-glucuronidase is a rapid, specific and sensitive indicator of the presence of E. coli in urine, and provide additional information on the biological state of the infecting bacterial population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号