首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Summary A new genetic nomenclature for the macromolecules involved in bacterial protein synthesis is proposed and explained. Genes for ribosomal proteins are designated rsp, rpl and rpm while genes for ribosomal RNAs are rrs and rrl. Protein synthesis factors and ribosome assembly and modification activities are also consistantly named.  相似文献   

2.
Biological self-assembly is remarkable in its fidelity and in the efficient production of intricate molecular machines and functional materials from a heterogeneous mixture of macromolecules. The phycobilisome, a light-harvesting structure of cyanobacteria, presents the opportunity to study an in vivo assembly process in detail. The phycobilisome molecular architecture is defined, and crystal structures are available for all major proteins, as are a large sequence database (including a genome sequence) and effective genetic systems exist for some cyanobacteria. Recent studies on subunit interaction, covalent modification, and protein stability suggest a model for the earliest events in the phycobilisome assembly pathway. Partitioning of phycobilisome proteins between degradation and assembly is proposed to be controlled by the interaction equilibria between phycobilisome assembly partners, processing enzymes and chaperones. The model provides plausible explanations for existing observations and makes predictions that are amenable to direct experimental investigation.  相似文献   

3.
Analysis of X-ray and neutron scattering from biomacromolecular solutions   总被引:3,自引:0,他引:3  
New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are presented. Small-angle scattering is rapidly becoming a streamline tool in structural molecular biology providing unique information about overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and assembly processes.  相似文献   

4.
The molecular chaperone concept   总被引:29,自引:0,他引:29  
Molecular chaperones are a ubiquitous family of cellular proteins which mediate the correct folding of other polypeptides, and in some cases their assembly into oligomeric structures, but which are not components of those final structures. Known chaperones do not possess steric information for protein folding but inhibit unproductive folding and assembly pathways which would otherwise act as dead-end kinetic traps and produce incorrect structures. Chaperones function by binding specifically and non-covalently to interactive protein surfaces that are exposed transiently during cellular processes such as protein synthesis, protein transport across membranes, DNA synthesis, the recycling of clathrin cages, the assembly of organellar complexes from imported subunits, and stress responses. This binding is reversed under circumstances which favour correct interactions and in some cases ATP hydrolysis is involved in this reversal. Some chaperones bind specifically to a structural feature present in a wide range of unrelated proteins that is accessible only during the early stages of folding. The nature of this structural feature is unknown, but its identification is an important goal of current research. Knowledge of chaperone function may be important for the production of proteins for biotechnological purposes since in some cases chaperones may improve the yield of functional product. It is likely that chaperone diseases exist which result from the failure of certain proteins to fold correctly due to changes in chaperone structure.  相似文献   

5.
Carbon partitioning techniques for the separation of physiologically important macromolecules (lipid, carbohydrate and protein) need to be efficient if they are to yield meaningful estimates of carbon flow in macromolecular synthesis, as measured by [14C] bicarbonate incorporation techniques. However, the efficiency of partitioning is rarely checked. Using existing methods, we found highly variable extraction efficiency of these macromolecules particularly of carbohydrate from cells grown under light:dark regimes. We report on a highly reproducible modification to existing methods which involves autoclaving with 5% trichloroacetic acid and centrifugation to separate carbohydrate and protein fractions. The presence of a structural non-extractable carbohydrate pool is reported.  相似文献   

6.
By convention, the term "mitochondrial diseases" refers to disorders of the mitochondrial respiratory chain, which is the only metabolic pathway in the cell that is under the dual control of the mitochondrial genome (mtDNA) and the nuclear genome (nDNA). Therefore, a genetic classification of the mitochondrial diseases distinguishes disorders due to mutations in mtDNA, which are governed by the relatively lax rules of mitochondrial genetics, and disorders due to mutations in nDNA, which are governed by the stricter rules of mendelian genetics. Mutations in mtDNA can be divided into those that impair mitochondrial protein synthesis in toto and those that affect any one of the 13 respiratory chain subunits encoded by mtDNA. Essential clinical features for each group of diseases are reviewed. Disorders due to mutations in nDNA are more abundant not only because most respiratory chain subunits are nucleus-encoded but also because correct assembly and functioning of the respiratory chain require numerous steps, all of which are under the control of nDNA. These steps (and related diseases) include: (i) synthesis of assembly proteins; (ii) intergenomic signaling; (iii) mitochondrial importation of nDNA-encoded proteins; (iv) synthesis of inner mitochondrial membrane phospholipids; (v) mitochondrial motility and fission.  相似文献   

7.
The brain is able to record the messages that arrive from the external world and memory is the specific mechanism of this recording which can leave either a transient or a permanent trace.It is likely that the structural basis of such a mechanism is a modification of macromolecular conformation induced by electric events concomitant with the neural discharge.Nucleic acids and proteins are candidates for the role of basic molecules in the engram because of their ability to undergo transient structural modifications such as conformational changes and to render permanent the above modifications through the system of protein biosynthesis.Short-term memory is a transient modification established within very short time intervals which can be wiped out quite easily. It might in fact correspond to a single interference with the synaptic activity, dependent on a transient and labile influence of macromolecules present in synaptic membrane and modified by the electric field created by neural discharge within the membrane.Long-term memory is the basis of a global condition referred to as experience and requires longer times to be established. It is definitely associated with protein synthesis and results as a permanent modification of the number and structure of the synapses.The mechanism of the recording and retrieval of information has been described with an attempt to inter-relate different models and hypotheses.  相似文献   

8.
9.
10.
11.
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.  相似文献   

12.
Changes of chromatin structure require participation of chromatin remodeling factors (CRFs), which are ATP-dependent multisubunit complexes that change the structure of the nucleosome without covalently modifying its components. CRFs act together with other protein factors to regulate the extent of chromatin condensation. Four CRF families are currently distinguished based on their structural and biochemical characteristics: SWI/SNF, ISWI, Mi-2/CHD, and SWR/INO80. X-ray diffraction analysis and electron microscopy are the main methods to obtain structural information about macromolecules. CRFs are difficult to obtain in crystal because of their large sizes and structural heterogeneity, and transmission electron microscopy (TEM) is mostly employed in their structural studies. The review considers all structures obtained for CRFs by TEM and discusses several models of CRF–nucleosome interactions.  相似文献   

13.
The role of type 1 fimbriae in the mannose-sensitive attachment of Escherichia coli to eucaryotic cells was investigated by deletion mutation analysis of a recombinant plasmid, pSH2, carrying the genetic information for the synthesis and expression of functional type 1 fimbriae. A mutant, pUT2002, containing a deletion remote from the structural gene encoding the 17-kilodalton subunit protein of type 1 fimbriae failed to agglutinate guinea pig erythrocytes even though the bacteria expressed fimbriae morphologically and antigenically indistinguishable from those produced by the intact recombinant plasmid. Fimbriae isolated from pUT2002 failed to agglutinate guinea pig erythrocytes, but reacted with a monoclonal antibody specific for quaternary structural determinants of type 1 fimbriae. Moreover, the dissociated fimbrial subunits from this mutant were indistinguishable from normal fimbriae by their migration during electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, by their reactivity with a monoclonal antibody directed against a subunit-specific epitope, and in enzyme-linked immunosorbent assays with monospecific antisera. These results indicate that the adhesive functions in type 1 fimbriae are dependent on a factor(s) encoded by a gene other than those required for synthesis, assembly, and expression of the structural 17-kilodalton subunit.  相似文献   

14.
Macromolecular complexes composed of proteins or proteins and nucleic acids rather than individual macromolecules mediate many cellular activities. Maintenance of these activities is essential for cell viability and requires the coordinated production of the individual complex components as well as their faithful incorporation into functional entities. Failure of complex assembly may have fatal consequences and can cause severe diseases. While many macromolecular complexes can form spontaneously in vitro, they often require aid from assembly factors including assembly chaperones in the crowded cellular environment. The assembly of RNA protein complexes implicated in the maturation of pre-mRNAs (termed UsnRNPs) has proven to be a paradigm to understand the action of assembly factors and chaperones. UsnRNPs are assembled by factors united in protein arginine methyltransferase 5 (PRMT5)- and survival motor neuron (SMN)-complexes, which act sequentially in the UsnRNP production line. While the PRMT5-complex pre-arranges specific sets of proteins into stable intermediates, the SMN complex displaces assembly factors from these intermediates and unites them with UsnRNA to form the assembled RNP. Despite advanced mechanistic understanding of UsnRNP assembly, our knowledge of regulatory features of this essential and ubiquitous cellular function remains remarkably incomplete. One may argue that the process operates as a default biosynthesis pathway and does not require sophisticated regulatory cues. Simple theoretical considerations and a number of experimental data, however, indicate that regulation of UsnRNP assembly most likely happens at multiple levels. This review will not only summarize how individual components of this assembly line act mechanistically but also why, how, and when the UsnRNP workflow might be regulated by means of posttranslational modification in response to cellular signaling cues.  相似文献   

15.
16.
The procapsid of the Bacillus subtilis bacteriophage SPP1 is formed by the major capsid protein gp13, the scaffolding protein gp11, the portal protein gp6, and the accessory protein gp7. The protein stoichiometry suggests a T=7 symmetry for the SPP1 procapsid. Overexpression of SPP1 procapsid proteins in Escherichia coli leads to formation of biologically active procapsids, procapsid-like, and aberrant structures. Co-production of gp11, gp13 and gp6 is essential for assembly of procapsids competent for DNA packaging in vitro. Presence of gp7 in the procapsid increases the yield of viable phages assembled during the reaction in vitro five- to tenfold. Formation of closed procapsid-like structures requires uniquely the presence of the major head protein and the scaffolding protein. The two proteins interact only when co-produced but not when mixed in vitro after separate synthesis. Gp11 controls the polymerization of gp13 into normal (T=7) and small sized (T=4?) procapsids. Predominant formation of T=7 procapsids requires presence of the portal protein. This implies that the portal protein has to be integrated at an initial stage of the capsid assembly process. Its presence, however, does not have a detectable effect on the rate of procapsid assembly during SPP1 infection. A stable interaction between gp6 and the two major procapsid proteins was only detected when the three proteins are co-produced. Efficient incorporation of a single portal protein in the procapsid appears to require a structural context created by gp11 and gp13 early during assembly, rather than strong interactions with any of those proteins. Gp7, which binds directly to gp6 both in vivo and in vitro, is not necessary for incorporation of the portal protein in the procapsid structure.  相似文献   

17.
Site-specific structural modification is a powerful tool for studying functional mechanisms in proteins where the structures may be manipulated by direct chemical modification, by selection of naturally-occurring mutants, or by site-directed mutagenesis. Here, we present a general strategy for such studies, which we term "mapping by structure-function perturbation." A series of functional perturbations (i.e., deviations of functional behavior from that of the native protein) are mapped against the structural locations of the modified sites, obtained over a range of locations. The modifications are treated as arbitrary perturbations of structure at specific locations, in contrast to the conventional approach of trying to interpret their local stereochemistry. The map yields information on structural locations of functional events and pathways of coupling within protein assemblies. We have applied this approach to the ligand-linked subunit assembly of human hemoglobin, using both chemically-modified heme sites (CN-met), and amino acid residues altered by mutation and chemical modification.  相似文献   

18.
The effect of temperature on the circular dichroism (CD) and the optical rotatory dispersion (ORD) of macromolecules, and particularly nucleic acids, provides useful information regarding macromolecular conformation (1–3). Instruments which can perform this function, however, are not commercially available. The dependence of CD upon temperature is usually measured by manual variation of the temperature of a jacketed-cell assembly positioned within the spectropolarimeter. We wish to report a modification of the Beckman Tm Analyzer 1, which is designed to record temperature-optical density profiles, permitting the use of this instrument in conjunetion with a Durrum-Jasco recording spectropolarimeter 2. This assembly provides for automatic recording of CD or ORD versus temperature at wavelengths between 190 and 700 mμ. We recently employed this system in studies of the temperature dependence of CD in DNA-ethidium bromide complexes (4,5).  相似文献   

19.
Diatoms are unicellular algae that make cell walls out of silica with highly ornate features on the nano- to microscale. The complexity and variety of diatom cell wall structures exceeds those possible with synthetic materials chemistry approaches. Understanding the design and assembly processes involved in diatom silicification should provide insight into patterning on the unicellular level, and information for biomimetic approaches for materials synthesis. In this report we examine the formation of distinct cell wall structures (valves and girdle bands) in the diatom Cyclotella cryptica by high resolution imaging using SEM, AFM, and fluorescence microscopy. Special attention was paid to imaging structural intermediates, which provided insight into the underlying design and assembly principles involved. Distinct stages in valve formation were identified, indicating a transition from a fractally organized structure to a dynamic pathway-dependent process. Substructures in the valves appeared to be pre-positioned prior to complete silicification, suggesting that organics responsible for these structures were pre-assembled and put in place. Microtubules and microfilamentous actin play significant roles in the positioning process, and actin is also important in the pathway-dependent expansion of the front of silicification. Our results indicate that even though all silica structures in C. cryptica are made of assemblies of nanoparticulate silica, control of meso- and microscale structure occurs on a higher order. It is apparent that diatoms integrate bottom up and top down control and synthesis mechanisms to form the diversity of structures possible.  相似文献   

20.
More than 40% of the RNA structures have been determined using nuclear magnetic resonance (NMR) technique. NMR mainly provides local structural information of protons and works most effectively on relatively small biomacromolecules. Hence structural characterization of large RNAs can be difficult for NMR alone. Electron microscopy (EM) provides global shape information of macromolecules at nanometer resolution, which should be complementary to NMR for RNA structure determination. Here we developed a new energy term in Xplor-NIH against the density map obtained by EM. We conjointly used NMR and map restraints for the structure refinement of three RNA systems — U2/U6 small-nuclear RNA, genome-packing motif (ΨCD)2 from Moloney murine leukemia virus, and ribosome-binding element from turnip crinkle virus. In all three systems, we showed that the incorporation of a map restraint, either experimental or generated from known PDB structure, greatly improves structural precision and accuracy. Importantly, our method does not rely on an initial model assembled from RNA duplexes, and allows full torsional freedom for each nucleotide in the torsion angle simulated annealing refinement. As increasing number of macromolecules can be characterized by both NMR and EM, the marriage between the two techniques would enable better characterization of RNA three-dimensional structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号