首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.  相似文献   

2.
The amplitudes of high-frequency longitudinal fluctuations excited by a nonequilibrium source in a nonuniform plasma are calculated. The results obtained are applicable to arbitrary nonequilibrium distributions of plasma particles in the absence of parametric instabilities. The spectra of probing waves scattered by fluctuations in a linear ionospheric plasma layer under conditions typical of experiments on incoherent radio wave scattering are found. The effects of electron-ion collisions and electron temperature anisotropy on the scattering intensity are demonstrated.  相似文献   

3.
A study is made of electromagnetic oscillations of a plasma in open field line geometry (open magnetic devices). The oscillations that propagate from the critical surface and are originally of the nature of the electron Langmuir waves are shown to continuously change their nature and to escape from the plasma into vacuum in the form of electromagnetic waves. This phenomenon may give rise to wave energy losses from a thermodynamically nonequilibrium (unstable) plasma, e.g., a plasma penetrated by charged particle beams.  相似文献   

4.
The effect of the Debye layer on the absorption of an electromagnetic surface wave propagating along the plasma-dielectric interface is considered. The electric field distribution in the Debye layer and the energy absorbed by the plasma electrons in this layer are determined. It is shown that the ratio of the rate at which surface waves are damped due to Cherenkov absorption by the electrons reflected from the electric field potential in the transition layer to their frequency is on the order of the ratio of the electron thermal velocity to the wave phase velocity.  相似文献   

5.
A theoretical model is presented that describes the charging of dust grains in the positive plasma column of a stratified glow dc discharge in argon. A one-dimensional self-consistent model is used to obtain axial profiles of the electric field, as well as the electron energy distribution function along the axis of the discharge tube. Radial profiles of the electric field are determined in the ambipolar diffusion approximation. It is assumed that, in the radial direction, the electron distribution function depends only on the total electron energy. Two-dimensional distributions of the discharge plasma parameters are calculated and used to determine the potential and charge of a test dust grain at a certain point within the discharge and the electrostatic forces acting on it. It is shown that the grain charge distribution depends strongly on the nonequilibrium electron distribution function and on the nonuniform distribution of the electric field in a stratified glow discharge. A discussion is presented on the suspension of dust grains, the separation of grains by size in the discharge striations, and a possible mechanism for the onset of vortex dust motion at the edge of a dust cloud.  相似文献   

6.
A kinetic equation for the electrons scattered by acoustic phonons in a solid is derived, and relationships between power-law asymptotic solutions and the particle and energy fluxes in phase space are established. The dependence of the nonextensivity parameter on the intensity of the particle flow in phase space is determined for a nonequilibrium solid-state plasma with sources and sinks. The formation of a steady-state nonequilibrium electron distribution function in a semiconductor with a source and a sink in phase space is numerically simulated using the Landau and Fokker-Planck collision integrals. The nonequilibrium electron distributions formed in the solid-state plasmas of semiconductors and of a Sb/Cs cathode are studied experimentally. It is shown that, within the electron energy range of 5–100 eV, the electron distribution functions decrease with energy according to a power law.  相似文献   

7.
The distribution function of the relativistic electrons produced in the interaction between an intense electromagnetic wave and a neutral gas is derived and is shown to be nonequilibrium and anisotropic. The drift plasma current is calculated, and the applicability conditions for the results obtained are determined.  相似文献   

8.
Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth’s ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas’kov and Gurevich (Geomagn. Aéron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.  相似文献   

9.
Plasma Physics Reports - The results of experimental studies of the fast electron distribution function under the conditions of a nonequilibrium plasma of a pulsed discharge in helium are...  相似文献   

10.
A study is made of the effect of the heating of plasma electrons in the field of a potential surface wave on the wave dispersion properties. The wave is assumed to propagate along the boundary between a metal and a finite-pressure plasma. Different mechanisms for electron energy losses are considered in the weak heating approximation. The spatial distribution of the plasma electron temperature under nonlocal heating conditions is derived on the basis of the electron energy balance equation. Expressions for the spatial damping rate and the nonlinear shift of the wavenumber are analyzed for different values of the plasma parameters. The results obtained are valid for both semiconductor and gaseous plasmas.  相似文献   

11.
The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.  相似文献   

12.
A study is made of the one-dimensional linear problem of the absorption of the energy of an extraordinary wave propagating along a nonuniform magnetic field by a plasma in the ECR region. The plasma electrons are assumed to be nonrelativistic and are described by a collisionless kinetic equation. The distribution of the absorbed power among the electrons and the distribution of the self-consistent field over the confinement system are obtained. The conditions under which the ECRH power is distributed uniformly among the bulk electrons are determined. The limits of applicability of the locally nonuniform magnetic field approximation are established. The solutions derived are compared with the solution to an analogous problem with the collisional absorption mechanism.  相似文献   

13.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

14.
A nonequilibrium anisotropic plasma produced by an electron beam in the residual air with a low content of ytterbium vapor was investigated by the probe method. It is found that a minor (at a level of a few ppm) admixture of ytterbium to low-pressure air substantially modifies the electron energy distribution function (EEDF): the main peak corresponding to thermal electrons broadens, and new peaks appear. It is shown that the observed change in the EEDF is caused by the low ionization energy of ytterbium, due to which one beam electron can ionize several ytterbium atoms. The new peaks in the EEDF correspond to the final energies of a beam electron after each subsequent ionizing collision with ytterbium atoms.  相似文献   

15.
Results are presented from a theoretical investigation of the acceleration of test electrons by a Langmuir wave excited by a short laser pulse at half the electron plasma frequency. Such a pulse penetrates into the plasma over a distance equal to the skin depth and efficiently excites Langmuir waves in the resonant interaction at the second harmonic of the laser frequency. It is shown that the beam of electrons accelerated by these waves is modulated into a train of electron bunches, but because of the initial thermal spread of the accelerated electrons, the bunches widen and begin to overlap, with the result that, at large distances, the electron beam becomes unmodulated.  相似文献   

16.
Absorption of the electromagnetic energy in a semi-infinite electron plasma is calculated for an arbitrary degree of the electron gas degeneracy. Absorption is determined by solving the boundary-value problem on the oscillations of electron plasma in a half-space with mirror boundary conditions for electrons. The Vlasov?Boltzmann kinetic equation with the Bhatnagar–Gross–Krook collision integral for the electron distribution function and Maxwell’s equation for the electric field are employed. The electron distribution function and the electric field inside plasma are searched for in the form of expansions in the eigenfunctions of the initial set of equations. The expansion coefficients are found for the case of mirror boundary conditions. The contribution of the plasma surface to absorption is analyzed. Cases with different degrees of electron gas degeneracy are considered. It is shown that absorption of the electromagnetic energy near the surface depends substantially on the ratio between the electric field frequency and the volumetric electron collision frequency.  相似文献   

17.
A collisionless plasma produced by a short ionizing pulse from an X-ray laser is characterized by an anisotropic monoenergetic electron distribution governed by the classical photoeffect. The dispersion properties of such a photoionized plasma are studied. The spectra of high-frequency plasma waves and their damping, as well as the parameters of the aperiodic instability of a photoionized plasma, are described. The relationship between the electrostatic and magnetic perturbations generated by this instability is investigated, and an analysis is made of how the instability transforms into a purely longitudinal (two-stream-like) instability and into a purely transverse (Weibel-like) instability, depending on the absolute value and direction of the wave vector.  相似文献   

18.
The paper presents results of numerical simulations of the electron dynamics in the field of the azimuthal and longitudinal waves excited in the channel of a stationary plasma thruster (SPT). The simulations are based on the experimentally determined wave characteristics. The simulation results show that the azimuthal wave displayed as ionization instability enhances electron transport along the thruster channel. It is established that the electron transport rate in the azimuthal wave increases as compared to the rate of diffusion caused by electron scattering from neutral atoms in proportion to the ratio between the times of electron? neutral collisions responsible for ionization and elastic electron scattering, respectively. An expression governing the plasma conductivity is derived with allowance for electron interaction with the azimuthal wave. The Hall parameter, the electron component of the discharge current, and the electron heating power in the thruster channel are calculated for two model SPTs operating with krypton and xenon. The simulation results agree well with the results of experimental studies of these two SPTs.  相似文献   

19.
A study is made of the characteristic features of the effect of plasma nonlinearity in a slow-wave structure on microwave generation by an electron beam and on electron beam energy losses. Theoretical results on the plasma density variation, the amplitude of the excited microwaves, and the velocity distribution function of the beam electrons are compared with the experimental data. It is shown that the self-consistency between the decreasing plasma density gradient and the spatial variation of the amplitude of an amplified wave in a slowwave structure leads to a significant (severalfold) increase in the efficiency with which the electron beam energy is converted into microwave energy in short pulses. The predictions of the theoretical model developed to describe the non-steady-state beam-plasma interaction agree well with the experimental data.  相似文献   

20.
Nonlinear oscillations of a semiconductor plasma with a low-density electron beam in the absence of an external magnetic field are studied in the hydrodynamic approximation. The beam is assumed to be nonrelativistic and monoenergetic. Cases are studied in which the Langmuir frequency of the electron oscillations in a semiconductor is much higher or much lower than the electron momentum relaxation rate. The self-similar solution obtained for the first case describes the damping of the nonlinear oscillations of the wave potential. Numerical analysis of the second case shows that the electric field distribution in the beam may correspond to that in a shock wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号