首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyruvate production and excretion by the luminous marine bacteria.   总被引:10,自引:2,他引:8       下载免费PDF全文
During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes.  相似文献   

2.
In mammalian cell cultures, ammonia that is released into the medium as a result of glutamine metabolism and lactate that is excreted due to incomplete glucose oxidation are both known to essentially inhibit the growth of cells. For some cell lines, for example, hybridoma cells, excreted ammonia also has an effect on product formation. Although glutamine has been generally considered as the major energy source for mammalian cells, it was recently found that various adherent cell lines (MDCK, CHO-K1, and BHK21) can grow as well in glutamine-free medium, provided glutamine is substituted with pyruvate. In such a medium the level of both ammonia and lactate released was significantly reduced. In this study, metabolic flux analysis (MFA) was applied to Madin Darby Canine Kidney (MDCK) cells cultivated in glutamine-containing and glutamine-free medium. The results of the MFA allowed further investigation of the influence of glutamine substitution with pyruvate on the metabolism of MDCK cells during different growth stages of adherent cells, e.g., early exponential and late contact-inhibited phase. Pyruvate seemed to directly enter the TCA cycle, whereas most of the glucose consumed was excreted as lactate. Although the exact mechanisms are not clear so far, this resulted in a reduction of the glucose uptake necessary for cellular metabolism in glutamine-free medium. Furthermore, consumption of ATP by futile cycles seemed to be significantly reduced when substituting glutamine with pyruvate. These findings imply that glutamine-free medium favors a more efficient use of nutrients by cells. However, a number of metabolic fluxes were similar in the two cultivations considered, e.g., most of the amino acid uptake and degradation rates or fluxes through the branch of the TCA cycle converting alpha-ketoglutarate to malate, which is responsible for the mitochondrial ATP synthesis. Besides, the specific rate of cell growth was approximately the same in both cultivations. Thus, the switch from glutamine-containing to glutamine-free medium with pyruvate provided a series of benefits without dramatic changes of cellular metabolism.  相似文献   

3.
Abstract By culturing Trypanosoma cruzi epimastigotes in modified Grace's medium with 10% foetal bovine serum, a significant quantity of metacyclic forms could be obtained. Transformation was observed after 8 days of culture, with metacyclic forms reaching 75%. Cultured Vero cells were infected with metacyclic forms and maintained until free-amastigote forms were obtained. Additionally, amastigote-like forms could be obtained by subjecting metacyclic cultures to heat shock. Parasites were grown with glucose as the major carbon source. The metabolites produced and excreted during culture were identified by difference proton nuclear magnetic resonance spectroscopy and quantified by enzymatic methods. The final products of glucose catabolism differed not only quantitatively but also qualitatively for the three major life-cycle stages of T. cruzi . The end products of metabolism produced by epimastigote forms were mainly acetate and pyruvate and, to a lesser extend, l-alanine and ethanol. Differences between epimastigotes and metacyclic forms were only quantitative. However, free amastigotes as well as amastigote-like forms, excreted acetate, glycerol, and pyruvate and to a lesser extent succinate, but no l-alanine or ethanol.  相似文献   

4.
Effect of pyruvate on glucose metabolism in Clostridium acetobutylicum   总被引:1,自引:0,他引:1  
Pyruvate effects on the metabolism of Clostridium acetobutylicum during glucose fermentation were studied. After addition to the culture medium, the pyruvate was rapidly used, provoking several changes in the metabolic pattern of the bacteria. When pyruvate addition occurred early in the fermentation, the glucose utilization decreased and the solventogenic phase was not induced. When pyruvate was added during solventogenesis, glucose consumption was slightly affected and the cells fermented both substrates simultaneously: however, the acidogenic phase started again to the detriment of solvent formation. Usually, during the solvent phase, the cells remetabolized acetic and butyric acids into solvents, but when pyruvate was added, the utilization of acids was stopped and the specific rates of acetate and butyrate formation increased immediately. The acidogenic growth phase was characterized by high levels of acetate and butyrate kinase which dropped during the solvent phase. Addition of pyruvate limited the down shift of these two enzymes and the levels of the activities remained constant during the course of the fermentation. Conversely, the acetoacetate decarboxylase, which is characteristic of the solvent phase, decreased sharply in the presence of pyruvate. The fact that the specific rate of glucose consumption was not decreased by the pyruvate metabolism, a cosubstrate, proves that the phosphoroclastic reaction is not a limiting step. Furthermore, the pyruvate utilization represented a promising approach to obtain useful data on the intracellular compounds implicated in the mechanism for switching from the acidogenic to the solventogenic phase.  相似文献   

5.
Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-(14)C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH(2)) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH(2) and to repressed levels of key enzymes.  相似文献   

6.
B?ck, August (Purdue University, Lafayette, Ind.), and Frederick C. Neidhardt. Properties of a mutant of Escherichia coli with a temperature-sensitive fructose-1,6-diphosphate aldolase. J. Bacteriol. 92:470-476. 1966.-A mutant of Escherichia coli in which fructose-1,6-diphosphate aldolase functions at 30 C but not at 40 C was used to study the physiological effect of a specific block in the Embden-Meyerhof glycolytic pathway. Growth of the mutant at 40 C was found to be inhibited by the presence of glucose or certain related compounds in the medium. At 40 C, glucose was metabolized at 30 to 40% of the control rate and was abnormal in that glucose was converted into other six-carbon substances (probably gluconate, in large part) that were released into the culture medium. The inhibition was complete, but transient; its duration depended upon the initial amount of inhibitor added. The resumption of growth at 40 C was correlated with the further catabolism of the excreted compounds. When glycerol was used to grow the mutant at 40 C, the growth inhibition by glucose was accompanied by cessation of glycerol metabolism. Growth on alpha-glycerol phosphate was not inhibited under these conditions, implicating glycerol kinase as a possible site of inhibition; no inhibition of glycerol kinase by sugar phosphates, however, could be detected in vitro. The inhibitory effect of glucose on growth at 40 C is not caused by a deficit of intracellular adenosine triphosphate, but may be the result of a generalized poisoning of many cell processes by a greatly increased intracellular concentration of fructose-1,6-diphosphate, the substrate of the damaged enzyme.  相似文献   

7.
An Acinetobacter sp. strain grown on carbohydrate substrates (mono- and disaccharides, molasses, starch) was shown to synthesize exopolysaccharides (EPS). Glucose catabolism proved to proceed via the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. Pyruvate entered the tricarboxylic acid cycle due to pyruvate dehydrogenase activity. Pyruvate carboxylation by pyruvate carboxylase was the anaplerotic reaction providing for the synthesis of intermediates for the constructive metabolism of Acinetobacter sp. grown on C6-substrates. The C6-metabolism in Acinetobacter sp. was limited by coenzyme A. Irrespective of the carbohydrate growth substrate (glucose, ethanol), the activities of the key enzymes of both C2- and C6-metabolism was high, except for the isocitrate lyase activity in glucose-grown bacteria. Isocitrate lyase activity was induced by C2-compounds (ethanol or acetate). After their addition to glucose-containing medium, both substrates were utilized simultaneously, and an increase was observed in the EPS synthesis, as well as in the EPS yield relative to biomass. The mechanisms responsible for enhancing the EPS synthesis in Acinetobacter sp. grown on a mixture of C2- and C6-substrates are discussed.  相似文献   

8.
The effect of glucose concentration in the growth medium on the relationship between glycolysis, glycogen accumulation and vancomycin production of Amycolatopsis orientalis was investigated depending on the incubation time. After a lag phase, bacterial growth of A. orientalis began and biomass concentration increased continuously up to 36th or 48th hours while glucose concentration in the culture medium was consumed rapidly in the same time of incubation. In addition, increase in glucose concentrations of the growth medium lead to increase intracellular glucose as well as glycerol levels. Intracellular pyruvate levels increased significantly up to 15 g/L while extracellular pyruvate levels with respect to increases in glucose concentration. A positive correlation between glucose kinase activities and glucose concentration was determined during the incubation period. Pyruvate kinase activity increased up to 15 g/L glucose and 48th hour of incubation. As a glycopeptide antibiotic, vancomycin production increased with the increases in glucose concentrations up to 15 g/L. These results indicated that glycogen accumulation with respect to glucose concentration of the growth medium was concomitant with the sporulation of A. orientalis. When the initial glucose concentration exceeded 15 g/L, pyruvate excretions as well as intracellular glycogen and glycerol productions were supported in spite of repression in vancomycin production of A. orientalis.  相似文献   

9.
C nuclear magnetic resonance (C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-C]citrate, [3-C]pyruvate, and [2-C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. alpha-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the alpha-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented.  相似文献   

10.
The growth of Yarrowia lipolytica yeast as well the biosynthesis of citric acid on rapeseed oil were studied. It was indicated that the initial step of assimilation of rapeseed oil in the yeast Y. lipolytica is their hydrolysis by extracellular lipases with the formation of glycerol and fatty acids, which appear in the medium in the phase of active growth. The concentrations of these metabolites change insignificantly upon further cultivation. Lipase and the key enzymes of glycerol metabolism (glycerol kinase) and the glyoxylate cycle responsible for the metabolism of fatty acids (isocitrate lyase and malate synthase) are induced just at the beginning of the growth phase and remain active in the course of further cultivation. These results, taken together, suggest that glycerol and fatty acids according in the medium do not suppress the metabolism of each other. The fact that glycerol and fatty acids can be consumed simultaneously is of special importance for the development of the efficient regime of oil feeding, Y. lipolytica produced citric acid (175?g/L) with a yield of 150%. It should be noted that the simultaneous utilization of two different substrates is not typical of micro-organisms, which first assimilate one of the two available substrates (commonly, a carbohydrate), whereas the assimilation of the other substrate starts only after the first substrate is fully consumed from the medium. Indeed, upon the cultivation of Y. lipolytica on the mixture of glucose and oleic acid, the latter substrate began to be utilized only when the concentration of glucose decreased. The glycolytic enzyme pyruvate dehydrogenase was induced from the first hours of cultivation and remained at high levels until the exhaustion of glucose in the medium. At the same time, the activities of isocitrate lyase and malate synthase were very low during the metabolism of glucose, but were rapidly induced (approximately in 10 times) after the exhaustion of glucose in the medium. When Y. lipolytica was grown on the mixture of glucose and hexadecane, the dynamics of growth and substrate consumption was typical of the diauxie phenomenon: the utilization of hexadecane began only in several hours after the time when glucose was completely exhausted in the cultivation medium. In this case, the exhaustion of glucose arrested growth and the culture resumed growth only after a lag period. The assay of enzymes showed that the glycolytic enzyme pyruvate dehydrogenase was active during the phase of growth on glucose, whereas the enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase were active during the phase of growth on hexadecane. In recent years in the literature, there are data that the different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins (Cho et al. 2009), but there are different circuits of repression for different groups of genes (Gancedo 1990). We will discuss the possible metabolic regulation in the case of Y. lipolytica.  相似文献   

11.
The metabolism of various organic substrates by suspensions of Mycoplasma mycoides subsp. mycoides in a salts solution was followed by microcalorimetry. Enthalpy changes associated with metabolism were in good agreement with theoretical values. Substrate utilization showed Michaelis kinetics, allowing saturation constants (Km) and maximum specific rates of substrate utilization (Vmax) to be determined. In cells grown on a complex medium containing glucose, Km values were: glucose, fructose, N-acetylglucosamine, glycerol and pyruvate, less than 5 microM; lactate, 20 microM; glucosamine, 130 microns, and mannose, 1 mM. Values of Vmax for glycerol, pyruvate and lactate were similar and approximately twice those for glucose, mannose, glucosamine and N-acetylglucosamine; Vmax for fructose was one-quarter of that for glucose. In cells grown on complex medium in which glucose was replaced by mannose, glucosamine or N-acetylglucosamine, Vmax and Km for the respective growth sugars and for glucose were not significantly affected. However, in cells grown in the presence of fructose, Vmax for fructose increased to the value observed for glucose. It is suggested that M. mycoides is adapted to, and is constitutive for, the utilization of a single sugar (glucose), and a single amino sugar (N-acetylglucosamine), but that in the presence of fructose a fructose-utilizing pathway is induced.  相似文献   

12.
The metabolic utilization of 14C-labelled acetate, pyruvate, lactate and glucose by isolated epididymal fat-cells was compared in two groups of rats fed ad libitum, one group young and lean (150-200 g body wt.), the other older and spontaneously obese (500-650 g body wt.). The influence of unlabelled glucose (6 mM) and insulin on substrate utilization by adipocytes was also studied. (1) Pyruvate and lactate were found to be good precursors for fatty-acid synthesis in small fat-cells, but not in larger fat-cells. On the other hand, lactate conversion into CO2 and the glycerol moiety of acylglycerols proceeded activity in both types of cells, and in some cases, it even exceeded the rates of glucose utilization. (2) The addition of glucose or glucose plus insulin, but not insulin alone, enhanced the metabolism of acetate, pyruvate and lactate in both types of fat-cells. (3) Fatty-acid synthesis de novo in large fat-cells was markedly decreased regardless of the substrate utilized. These findings point to lactate as a significant precursor for triacylglycerol synthesis in adipocytes. Furthermore, decreased fatty-acid synthesis de novo appears to be an acquired metabolic deficiency of enlarging adipocytes, independent of precursor substrate availability.  相似文献   

13.
The activity of decarboxylase in the cells of two bacterial species belonging to the genus Enterobacter was found to depend on the carbon source of the growth medium and on the substrate used to determine the enzyme activity. Cells grown on a medium containing glucose and incubated in solutions of glucose and sodium pyruvate produced 1.4 to 2.1 times more CO2 than cells utilizing glycerol. The highest amount of CO2 was formed on pyruvate, the substrate of the first reaction of decarboxylation.  相似文献   

14.
A high growth rate in bacterial cultures is usually achieved by optimizing growth conditions, but metabolism of the bacterium limits the maximal growth rate attainable on the carbon source used. This limitation can be circumvented by engineering the metabolism of the bacterium. Acinetobacter baylyi has become a model organism for studies of bacterial metabolism and metabolic engineering due to its wide substrate spectrum and easy-to-engineer genome. It produces naturally storage lipids, such as wax esters, and has a unique gluconate catabolism as it lacks a gene for pyruvate kinase. We engineered the central metabolism of A. baylyi ADP1 more favorable for gluconate catabolism by expressing the pyruvate kinase gene (pykF) of Escherichia coli. This modification increased growth rate when cultivated on gluconate or glucose as a sole carbon source in a batch cultivation. The engineered cells reached stationary phase on these carbon sources approximately twice as fast as control cells carrying an empty plasmid and produced similar amount of biomass. Furthermore, when grown on either gluconate or glucose, pykF expression did not lead to significant accumulation of overflow metabolites and consumption of the substrate remained unaltered. Increased growth rate on glucose was not accompanied with decreased wax ester production, and the pykF-expressing cells accumulated significantly more of these storage lipids with respect to cultivation time.  相似文献   

15.
Pyruvate and lactate efflux from C-6 glioma cells has been found to be regulated by both the medium glucose concentration and the medium concentration of the two acids. Each moves down a concentration gradient until the extracellular level is in equilibrium with the intracellular. Long-term growth studies demonstrated that the cells preferentially utilize glucose but that once it is depleted, they will take up first pyruvate, followed by lactate, for further metabolism. Changes in the intracellular levels of the two metabolites correspond to those seen in the medium. The rate of glycogen breakdown parallels that of medium glucose ultilization. Preliminary results with the C-1300 neuroblastoma cells showed pyruvate and lactate efflux rates comparable to those of the glioma cells.  相似文献   

16.
13C nuclear magnetic resonance (13C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-13C]citrate, [3-13C]pyruvate, and [2-13C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. α-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the α-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented.  相似文献   

17.
Lactate and ammonia are the most important waste products of central carbon metabolism in mammalian cell cultures. In particular during batch and fed-batch cultivations these toxic by-products are excreted into the medium in large amounts, and not only affect cell viability and productivity but often also prevent growth to high cell densities. The most promising approach to overcome such a metabolic imbalance is the replacement of one or several components in the culture medium. It has been previously shown that pyruvate can be substituted for glutamine in cultures of adherent Madin-Darby canine kidney (MDCK) cells. As a consequence, the cells not only released no ammonia but glucose consumption and lactate production were also reduced significantly. In this work, the impact of media changes on glucose and glutamine metabolism was further elucidated by using a high-throughput platform for enzyme activity measurements of mammalian cells. Adherent MDCK cells were grown to stationary and exponential phase in six-well plates in serum-containing GMEM supplemented with glutamine or pyruvate. A total number of 28 key metabolic enzyme activities of cell extracts were analyzed. The overall activity of the pentose phosphate pathway was up-regulated during exponential cell growth in pyruvate-containing medium suggesting that more glucose-6-phosphate was channeled into the oxidative branch. Furthermore, the anaplerotic enzymes pyruvate carboxylase and pyruvate dehydrogenase showed higher cell specific activities with pyruvate. An increase in cell specific activity was also found for NAD(+)-dependent isocitrate dehydrogenase, glutamate dehydrogenase, and glutamine synthetase in MDCK cells grown with pyruvate. It can be assumed that the increase in enzyme activities was required to compensate for the energy demand and to replenish the glutamine pool. On the other hand, the activities of glutaminolytic enzymes (e.g., alanine and aspartate transaminase) were decreased in cells grown with pyruvate, which seems to be related to a decreased glutamine metabolism.  相似文献   

18.
In order to study the physiological role of acetate metabolism in Escherichia coli, the growth characteristics of an E. coli W3100 pta mutant defective in phosphotransacetylase, the first enzyme of the acetate pathway, were investigated. The pta mutant grown on glucose minimal medium excreted unusual by-products such as pyruvate, D-lactate, and L-glutamate instead of acetate. In an analysis of the sequential consumption of amino acids by the pta mutant growing in tryptone broth (TB), a brief lag between the consumption of amino acids normally consumed was observed, but no such lag occurred for the wild-type strain. The pta mutant was found to grow slowly on glucose, TB, or pyruvate, but it grew normally on glycerol or succinate. The defective growth and starvation survival of the pta mutant were restored by the introduction of poly-beta-hydroxybutyrate (PHB) synthesis genes (phbCAB) from Alcaligenes eutrophus, indicating that the growth defect of the pta mutant was due to a perturbation of acetyl coenzyme A (CoA) flux. By the stoichiometric analysis of the metabolic fluxes of the central metabolism, it was found that the amount of pyruvate generated from glucose transport by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exceeded the required amount of precursor metabolites downstream of pyruvate for biomass synthesis. These results suggest that E. coli excretes acetate due to the pyruvate flux from PTS and that any method which alleviates the oversupply of acetyl CoA would restore normal growth to the pta mutant.  相似文献   

19.
We investigated the regulation of the central aerobic and hypoxic metabolism of the biocontrol and non-Saccharomyces wine yeast Pichia anomala. In aerobic batch culture, P. anomala grows in the respiratory mode with a high biomass yield (0.59 g [dry weight] of cells g of glucose(-1)) and marginal ethanol, glycerol, acetate, and ethyl acetate production. Oxygen limitation, but not glucose pulse, induced fermentation with substantial ethanol production and 10-fold-increased ethyl acetate production. Despite low or absent ethanol formation, the activities of pyruvate decarboxylase and alcohol dehydrogenase were high during aerobic growth on glucose or succinate. No activation of these enzyme activities was observed after a glucose pulse. However, after the shift to oxygen limitation, both enzymes were activated threefold. Metabolic flux analysis revealed that the tricarboxylic acid pathway operates as a cycle during aerobic batch culture and as a two-branched pathway under oxygen limitation. Glucose catabolism through the pentose phosphate pathway was lower during oxygen limitation than under aerobic growth. Overall, our results demonstrate that P. anomala exhibits a Pasteur effect and not a Crabtree effect, i.e., oxygen availability, but not glucose concentration, is the main stimulus for the regulation of the central carbon metabolism.  相似文献   

20.
Phosphoribulokinase in Alcaligenes eutrophus was partially inactivated when an autotrophic culture was shifted to heterotrophic growth with pyruvate as the sole source of carbon and energy. A similar response was observed on addition of various organic substrates to autotrophic cultures during the transition to mixotrophic growth. The extent of inactivation depended on the added substrate. Pyruvate or lactate caused the strongest inactivation among the tested substrates. Up to 75% of the phosphoribulokinase activity found in the autotrophic cells was lost within 30 min after supplementation of the cultures with either of these two substrates. This loss of enzyme activity was not the result of degradation of enzyme protein. Inactivation of phosphoribulokinase was accompanied by a decrease in the CO2 fixation rate of the cells. Reactivation of the enzyme occurred after exhaustion of pyruvate from the medium. Neither inactivation nor reactivation required de novo protein synthesis; however, continued energy conversion was necessary for the inactivation to occur. We suggest that the pyruvate metabolism of A. eutrophus is involved in these regulatory processes which act on phosphoribulokinase. They appear to contribute to the control of autotrophic CO2 assimilation in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号