首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fission yeast UVDR DNA repair pathway is inducible.   总被引:6,自引:1,他引:5       下载免费PDF全文
In addition to nucleotide excision repair (NER), the fission yeast Schizosaccharomyces pombe possesses a UV damage endonuclease (UVDE) for the excision of cyclobutane pyrimidine dimers and 6-4 pyrimidine pyrimidones. We have previously described UVDE as part of an alternative excision repair pathway, UVDR, for UV damage repair. The existence of two excision repair processes has long been postulated to exist in S.pombe, as NER-deficient mutants are still proficient in the excision of UV photoproducts. UVDE recognizes the phosphodiester bond immediately 5'of the UV photoproducts as the initiating event in this process. We show here that UVDE activity is inducible at both the level of uve1+ mRNA and UVDE enzyme activity. Further, we show that UVDE activity is regulated by the product of the rad12 gene.  相似文献   

2.
We have discovered a new DNA endonuclease in the fission yeast Schizosaccharomyces pombe which recognizes cyclobutane pyrimidine dimers and (6-4) pyrimidine-pyrimidone photoproducts. S. pombe DNA endonuclease (SPDE) catalyzes a single ATP-independent incision immediately 5' to the UV photoproduct and generates termini containing 3' hydroxyl and 5' phosphoryl groups. Based on these properties, we propose that SPDE may function in a DNA repair capacity, representing the initial recognition/cleavage step of a DNA excision repair pathway.  相似文献   

3.
4.
5.
6.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

7.
Schizosaccharomyces pombe cells deficient in nucleotide excision repair (NER) are still able to remove photoproducts from cellular DNA, showing that there is a second pathway for repair of UV damage in this organism. We have characterized this repair pathway by cloning and disruption of the genomic gene encoding UV damage endonuclease (UVDE). Although uvde gene disruptant cells are only mildly UV sensitive, a double disruptant of uvde and rad13 (a S. pombe mutant defective in NER) was synergistically more sensitive than either single disruptant and was unable to remove any photoproducts from cellular DNA. Analysis of the kinetics of photoproduct removal in different mutants showed that the UVDE-mediated pathway operates much more rapidly than NER. In contrast to a previous report, our genetic analysis showed that rad12 and uvde are not the same gene. Disruption of the rad2 gene encoding a structure- specific flap endonuclease makes cells UV sensitive, but much of this sensitivity is not observed if the uvde gene is also disrupted. Further genetic and immunochemical analyses suggest that DNA incised by UVDE is processed by two separate mechanisms, one dependent and one independent of flap endonuclease.  相似文献   

8.
S Kanno  S Iwai  M Takao    A Yasui 《Nucleic acids research》1999,27(15):3096-3103
UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Apyrimidinic sites are more effectively nicked by UVDE than apurinic sites. UVDE also possesses 3"-repair activities for AP sites nicked by AP lyase and for 3"-phosphoglycolate produced by bleomycin. The Uvde gene introduced into Escherichia coli cells lacking two types of AP endonuclease, Exo III and Endo IV, gave the host cells resistance to methylmethane sulfonate and t-butyl hydroperoxide. We identified two AP endonuclease activities in S.pombe cell extracts. Besides cyclobutane pyrimidine dimers and 6-4 photoproducts, N. crassa UVDE also nicks Dewar photoproducts. Thus, UVDE is able to repair both of the major forms of DNA damage in living organisms: UV-induced DNA lesions and AP sites.  相似文献   

9.
The fission yeast, Schizosaccharomyces pombe, possesses a UV-damaged DNA endonuclease-dependent excision repair (UVER) pathway in addition to nucleotide excision repair pathway for UV-induced DNA damage. We examined cyclobutane pyrimidine dimer removal from the myo2 locus on the nuclear genome and the coI locus on the mitochondrial genome by the two repair pathways. While nucleotide excision repair repairs damage only on the nuclear genome, UVER efficiently removes cyclobutane pyrimidine dimers on both nuclear and mitochondrial genomes. The ectopically expressed wild type UV-damaged DNA endonuclease was localized to both nucleus and mitochondria, while modifications of N-terminal methionine codons restricted its localization to either of two organelles, suggesting an alternative usage of multiple translation initiation sites for targeting the protein to different organelles. By introducing the same mutations into the chromosomal copy of the uvde(+) gene, we selectively inactivated UVER in either the nucleus or the mitochondria. The results of UV survival experiments indicate that although UVER efficiently removes damage on the mitochondrial genome, UVER in the mitochondria hardly contributes to UV resistance of S. pombe cells. We suggest a possible UVER function in mitochondria as a backup system for other UV damage tolerance mechanisms.  相似文献   

10.
11.
12.
13.
We have developed efficient DNA repair extracts derived from the unusually large nuclei of Xenopus oocytes. These extracts use nucleotide excision repair (NER) to completely remove bulky adducts from DNA. There is very little or no synthesis on control, undamaged DNA, indicating the extracts do not have significant nonspecific nuclease activity, and repair of cyclobutane pyrimidine dimers (CPDs) occurs in the dark, indicating that NER, and not photolyase, is responsible for CPD repair. The extracts can be inactivated with antibodies specific to repair proteins and then repair activity can be restored by adding purified recombinant protein. Here we describe detailed protocols for preparing Xenopus nuclear repair extracts.  相似文献   

14.
We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient cells but not the rhp4B-deficient cells are sensitive to UV irradiation. However, the disruption of both rhp4A and rhp4B resulted in UV sensitivity that was greater than that of the rhp4A-deficient cells, revealing that Rhp4B plays a role in DNA repair on its own. Fission yeast has two pathways to repair photolesions on DNA, namely, nucleotide excision repair (NER) and UV-damaged DNA endonuclease-dependent excision repair (UVER). Studies with the NER-deficient rad13 and the UVER-deficient (Delta)uvde mutants showed the two rhp4 genes are involved in NER and not UVER. Assessment of the ability of the various mutants to remove cyclobutane pyrimidine dimers (CPDs) from the rbp2 gene locus indicated that Rhp4A is involved in the preferential repair of lesions on the transcribed DNA strand and plays the major role in fission yeast NER. Rhp4B in contrast acts as an accessory protein in non-transcribed strand (NTS) repair.  相似文献   

15.
Solar UV radiation induces significant levels of DNA damage in living things. This damage, if left unrepaired, is lethal in humans. Recent work has demonstrated that plants possess several repair pathways for UV-induced DNA damage, including pathways for the photoreactivation of both 6-4 products and cyclobutane pyrimidine dimers (CPDs), the two lesions most frequently induced by UV. Plants also possess the more general nucleotide excision repair (NER) pathway as well as bypass polymerases that enable the plant to replicate its DNA in the absence of DNA repair.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
17.
Ultraviolet (UV) irradiation induces predominantly cyclobutane and (6-4) pyrimidine dimer photoproducts in DNA. Several mechanisms for repairing these mutagenic UV-induced DNA lesions have been identified. Nucleotide excision repair is a major pathway, but mechanisms involving photolyases and DNA glycosylases have also been characterized. Recently, a novel UV damage endonuclease (UVDE) was identified that initiates an excision repair pathway different from previously established repair mechanisms. Homologues of UVDE have been found in eukaryotes as well as in bacteria. In this report, we have used oligonucleotide substrates containing site-specific cyclobutane pyrimidine dimers and (6-4) photoproducts for the characterization of this UV damage repair pathway. After introduction of single-strand breaks at the 5' sides of the photolesions by UVDE, these intermediates became substrates for cleavage by flap endonucleases (FEN-1 proteins). FEN-1 homologues from humans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe all cleaved the UVDE-nicked substrates at similar positions 3' to the photolesions. T4 endonuclease V-incised DNA was processed in the same way. Both nicked and flapped DNA substrates with photolesions (the latter may be intermediates in DNA polymerase-catalyzed strand displacement synthesis) were cleaved by FEN-1. The data suggest that the two enzymatic activities, UVDE and FEN-1, are part of an alternative excision repair pathway for repair of UV photoproducts.  相似文献   

18.
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.  相似文献   

19.
The global genome repair (GGR) subpathway of nucleotide excision repair (NER) is capable of removing lesions throughout the genome. In Saccharomyces cerevisiae the RAD7 and RAD16 genes are essential for GGR. Here we identify rhp7 (+), the RAD7 homolog in Schizosaccharomyces pombe. Surprisingly, rhp7 (+)and the previously cloned rhp16 (+)are located very close together and are transcribed in opposite directions. Upon UV irradiation both genes are induced, reaching a maximum level after 45-60 min. These observations suggest that the genes are co-regulated. Schizo-saccharomyces pombe rhp7 or rhp16 deficient cells are, in contrast to S.cerevisiae rad7 and rad16 mutants, not sensitive to UV irradiation. In S.pombe an alternative repair mechanism, UV damage repair (UVDR), is capable of efficiently removing photolesions from DNA. In the absence of this UVDR pathway both rhp7 and rhp16 deficient cells display an enhanced UV sensitivity. Epistatic analyses show that rhp7 (+)and rhp16 (+)are only involved in NER. Repair analyses at nucleotide resolution demonstrate that both Rhp7 and Rhp16, probably acting in a complex, are essential for GGR in S.pombe.  相似文献   

20.
Chromatin structure modulates DNA repair by photolyase in vivo.   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号