首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
European wildcat (Felis silvestris silvestris) populations are fragmented throughout most of the whole range of the subspecies and may be threatened by hybridization with the domestic cat F.s. catus. The underlying ecological processes promoting hybridization remain largely unknown. In France, wildcats are mainly present in the northeast and signs of their presence in the Pyrenees have been recently provided. However, no studies have been carried out in the French Pyrenees to assess their exposure to hybridization. We compared two local populations of wildcats, one living in a continuous forest habitat in the French Pyrenees, the other living in a highly fragmented forest‐agricultural landscape in northeastern France to get insights into the variability of hybridization rates. Strong evidence of hybridization was detected in northeastern France and not in the Pyrenees. Close kin in the Pyrenees were not found in the same geographic location contrary to what was previously reported for females in the northeastern wildcat population. The two wildcat populations were significantly differentiated (FST = 0.072) to an extent close to what has been reported (FST = 0.103) between the Iberian population, from which the Pyrenean population may originate, and the German population, which is connected to the northeastern population. The genetic diversity of the Pyrenean wildcats was lower than that of northeastern wildcat populations in France and in other parts of Europe. The lower hybridization in the Pyrenees may result from the continuity of natural forest habitats. Further investigations should focus on linking landscape features to hybridization rates working on local populations.  相似文献   

2.
Intraspecific diversification of the wildcat (Felis silvestris), including the European wildcat (F. s. silvestris), the Asian wildcat (F. s. ornata) and the African wildcat (F. s. lybica), was examined based on 39 cranial morphology variables. The samples of free‐ranging cats originated from Britain, Europe, Central Asia and southern Africa, consisting of both nominal wildcat specimens (referred to henceforth as ‘wildcats’) and nominal non‐wildcat specimens (‘non‐wildcats’) based on museum labels. The skull morphology of ‘wildcats’ from Britain and Europe is clearly different from that of ‘wildcats’ of Central Asia and southern Africa. The latter are characterized especially by their proportionately larger cheek teeth. On the basis of principal component, discriminant function and canonical variate analyses, the skull morphology of British ‘non‐wildcats’ is less distinct than is that of British ‘wildcats’ from the skull morphologies of ‘wildcats’ of Central Asia and southern Africa. On the other hand, the skull morphology of southern African ‘non‐wildcats’ is as distinct from those of ‘wildcats’ of Britain and Europe as is that of southern African ‘wildcats’. We suggest that the evolution of the modern wildcat probably consisted of at least three different distribution expansions punctuated by two differentiation events: the exodus from Europe during the late Pleistocene, coinciding with the emergence of the steppe wildcat lineage (phenotype of Asian–African wildcat), followed by its rapid range expansion in the Old World. The second differentiation event was the emergence of the domestic cat followed by its subsequent colonization of the entire world with human assistance. Considering the recent evolutionary history of, and morphological divergence in, the wildcat, preventing hybridization between the European wildcat and the domestic cat is a high conservation priority. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 47–63.  相似文献   

3.
Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single‐nucleotide polymorphism (SNP)‐based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost‐effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.  相似文献   

4.
Extant populations of the European wildcat are fragmented across the continent, the likely consequence of recent extirpations due to habitat loss and over‐hunting. However, their underlying phylogeographic history has never been reconstructed. For testing the hypothesis that the European wildcat survived the Ice Age fragmented in Mediterranean refuges, we assayed the genetic variation at 31 microsatellites in 668 presumptive European wildcats sampled in 15 European countries. Moreover, to evaluate the extent of subspecies/population divergence and identify eventual wild × domestic cat hybrids, we genotyped 26 African wildcats from Sardinia and North Africa and 294 random‐bred domestic cats. Results of multivariate analyses and Bayesian clustering confirmed that the European wild and the domestic cats (plus the African wildcats) belong to two well‐differentiated clusters (average ФST = 0.159, Rst  = 0.392, P > 0.001; Analysis of molecular variance [AMOVA]). We identified from c. 5% to 10% cryptic hybrids in southern and central European populations. In contrast, wild‐living cats in Hungary and Scotland showed deep signatures of genetic admixture and introgression with domestic cats. The European wildcats are subdivided into five main genetic clusters (average ФST = 0.103, Rst  = 0.143, P > 0.001; AMOVA) corresponding to five biogeographic groups, respectively, distributed in the Iberian Peninsula, central Europe, central Germany, Italian Peninsula and the island of Sicily, and in north‐eastern Italy and northern Balkan regions (Dinaric Alps). Approximate Bayesian Computation simulations supported late Pleistocene–early Holocene population splittings (from c. 60 k to 10 k years ago), contemporary to the last Ice Age climatic changes. These results provide evidences for wildcat Mediterranean refuges in southwestern Europe, but the evolution history of eastern wildcat populations remains to be clarified. Historical genetic subdivisions suggest conservation strategies aimed at enhancing gene flow through the restoration of ecological corridors within each biogeographic units. Concomitantly, the risk of hybridization with free‐ranging domestic cats along corridor edges should be carefully monitored.  相似文献   

5.
The European wildcat, Felis silvestris silvestris, serves as a prominent target species for the reconnection of central European forest habitats. Monitoring of this species, however, appears difficult due to its elusive behaviour and the ease of confusion with domestic cats. Recently, evidence for multiple wildcat occurrences outside its known distribution has accumulated in several areas across Central Europe, questioning the validity of available distribution data for this species. Our aim was to assess the fine-scale distribution and genetic status of the wildcat in its central European distribution range. We compiled and analysed genetic samples from roadkills and hundreds of recent hair-trapping surveys and applied phylogenetic and genetic clustering methods to discriminate wild and domestic cats and identify population subdivision. 2220 individuals were confirmed as either wildcat (n = 1792) or domestic cat (n = 342), and the remaining 86 (3.9 %) were identified as hybrids between the two. Remarkably, genetic distinction of domestic cats, wildcats and their hybrids was only possible when taking into account the presence of two highly distinct genetic lineages of wildcats, with a suture zone in central Germany. 44 % of the individual wildcats where sampled outside the previously published distribution. Our analyses confirm a relatively continuous spatial presence of wildcats across large parts of the study area in contrast to previous analyses indicating a highly fragmented distribution. Our results suggest that wildcat conservation and management should take advantage of the higher than previously assumed dispersal potential of wildcats, which may use wildlife corridors very efficiently.  相似文献   

6.
The wildcat (Felis silvestris ssp.) is a conservation concern largely due to introgressive hybridization with its congener F. s. catus, the common domestic cat. Because of a recent divergence and entirely overlapping ranges, hybridization is common and pervasive between these taxa threatening the genetic integrity of remaining wildcat populations. Identifying pure wildcats for inclusion in conservation programs using current morphological discriminants is difficult because of gross similarity between them and the domestic, critically hampering conservation efforts. Here, we present a vetted panel of microsatellite loci and mitochondrial polymorphisms informative for each of the 5 naturally evolved wildcat subspecies and the derived domestic cat. We also present reference genotypes for each assignment class. Together, these marker sets and corresponding reference genotypes allow for the development of a genetic rational for defining "units of conservation" within a phylogenetically based taxonomy of the entire F. silvestris species complex. We anticipate this marker panel will allow conservators to assess genetic integrity and quantify admixture in managed wildcat populations and to be a starting point for more in-depth analysis of hybridization.  相似文献   

7.
The genetic integrity and evolutionary persistence of declining wildcat populations are threatened by crossbreeding with widespread free-living domestic cats. Here we use allelic variation at 12 microsatellite loci to describe genetic variation in 336 cats sampled from nine European countries. Cats were identified as European wildcats (Felis silvestris silvestris), Sardinian wildcats (F. s. libyca) and domestic cats (F. s. catus), according to phenotypic traits, geographical locations and independently of any genetic information. Genetic variability was significantly partitioned among taxonomic groups (FST = 0.11; RST = 0.41; P < 0.001) and sampling locations (FST = 0.07; RST = 0.06; P < 0.001), suggesting that wild and domestic cats are subdivided into distinct gene pools in Europe. Multivariate and Bayesian clustering of individual genotypes also showed evidence of distinct cat groups, congruent with current taxonomy, and suggesting geographical population structuring. Admixture analyses identified cryptic hybrids among wildcats in Portugal, Italy and Bulgaria, and evidenced instances of extensive hybridization between wild and domestic cats sampled in Hungary. Cats in Hungary include a composite assemblage of variable phenotypes and genotypes, which, as previously documented in Scotland, might originate from long lasting hybridization and introgression. A number of historical, demographic and ecological conditions can lead to extensive crossbreeding between wild and domestic cats, thus threatening the genetic integrity of wildcat populations in Europe.  相似文献   

8.
Hybridization between the European wildcat, Felis silvestris silvestris, and the domestic cat, Felis silvestris catus, has been found in several European countries with different landscape structures and in various proportions. In this study, we focus on a local population of European wildcats in forests fragmented by agricultural lands in northeastern France. Our aim is to better understand how the spatial organization of the wildcats in this particular type of environment might impact the proportion of hybridization. We combined radio-tracking and genetics through the use of microsatellite markers in order to assess both the spacing pattern and the level of hybridization of this wildcat population. Hybridization is rare in this wildcat population with only one putative hybrid (most likely backcrossed) detected out of 42 putative wildcats. We found that most females were concentrated inside the forest while males stood in the periphery or outside the forest. Furthermore, many males and females resulted related. Such a spacing pattern might limit contacts between male domestic cats and female wildcats and can be one of the causes that explain the low level of hybridization in the wildcat population in this environment. We could not exclude the possibility of hybrid presence in the neighboring domestic cat populations. Our results yield new insights on the influence that the landscape configuration and the spacing pattern can have on genetic flow between the populations of the two subspecies.  相似文献   

9.
Phenotypic variation in hybridizing species or subspecies is a prerequisite for allowing conservation ecologists and wildlife managers to identify parental populations and their hybrids in the field. We assessed the reliability of a set of eight morphological (body size and pelage characters) and four anatomical criteria (skull and intestine morphometric measurements) to distinguish between 302 French specimens classified as wildcat, domestic cat or hybrid on the basis of a Bayesian analysis (STRUCTURE) of their multilocus microsatellite genotypes. This aim was achieved by performing a set of multivariate analyses on morphological, anatomical and genetic data sets (Hill and Smith's analysis, co‐inertia analysis and discriminant analysis of principal components). Wildcats and domestic cats were very satisfactorily distinguished, even when using simple non‐invasive morphological criteria easily usable in the field like the morphology of the tail, dorsal line or flank stripes. Using anatomical instead of morphological characters slightly increased the discriminating power. Many more difficulties arose when we tried to distinguish hybrid specimens from both wildcat and domestic ones. Anatomical characters performed better than morphological ones in recognizing hybrids, but the assignment success rate remained very low, about 31.6% and 1.5%, respectively. Overall, the most discriminating characters were two continuous, derived anatomical characters: the cranial index followed by the intestinal index. Classification of specimens in three classes based on their microsatellite genotypes appeared to be inadequate for identifying hybrid specimens, as hybrid specimens seemed to be distributed along an anatomical continuum. With this observation in mind, we assessed the linear relationships between a proxy of the individual level of hybridization (qik) and the cranial and intestinal indices, respectively. Both relationships were highly significant. The greatest correlation was found with the cranial index (R² = 60.4%). Altogether, our results suggest that future work should be geared towards enhancing the measure of hybridization using more discriminating molecular markers and improving morphometric skull measurements through the use of modern geometric morphometric methods, using landmarks rather than skull dimension.  相似文献   

10.
The genomic era has led to an unprecedented increase in the availability of genome‐wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.  相似文献   

11.
Endemic gene pools have been severely endangered by human-mediated hybridization, which is posing new challenges in the conservation of several vertebrate species. The endangered European wildcat is an example of this problem, as several natural populations are suffering introgression of genes from the domestic cat. The implementation of molecular methods for detecting hybridization is crucial for supporting appropriate conservation programs on the wildcat. In this study, genetic variation at 158 single-nucleotide polymorphisms (SNPs) was analyzed in 139 domestic cats, 130 putative European wildcats and 5 captive-bred hybrids (N=274). These SNPs were variable both in wild (HE=0.107) and domestic cats (HE=0.340). Although we did not find any SNP that was private in any population, 22 SNPs were monomorphic in wildcats and pairwise FCT values revealed marked differences between domestic and wildcats, with the most divergent 35 loci providing an average FCT>0.74. The power of all the loci to accurately identify admixture events and discriminate the different hybrid categories was evaluated. Results from simulated and real genotypes show that the 158 SNPs provide successful estimates of admixture, with 100% hybrid individuals (two to three generations in the past) being correctly identified in STRUCTURE and over 92% using the NEWHYBRIDS'' algorithm. None of the unclassified cats were wrongly allocated to another hybrid class. Thirty-five SNPs, showing the highest FCT values, provided the most parsimonious panel for robust inferences of parental and first generations of admixed ancestries. This approach may be used to further reconstruct the evolution of wildcat populations and, hopefully, to develop sound conservation guidelines for its legal protection in Europe.  相似文献   

12.
Introgression can be an important evolutionary force but it can also lead to species extinction and as such is a crucial issue for species conservation. However, introgression is difficult to detect, morphologically as well as genetically. Hybridization with domestic cats (Felis silvestris catus) is a major concern for the conservation of European wildcats (Felis s. silvestris). The available morphologic and genetic markers for the two Felis subspecies are not sufficient to reliably detect hybrids beyond first generation. Here we present a single nucleotide polymorphism (SNP) based approach that allows the identification of introgressed individuals. Using high‐throughput sequencing of reduced representation libraries we developed a diagnostic marker set containing 48 SNPs (Fst  > 0.8) which allows the identification of wildcats, domestic cats, their hybrids and backcrosses. This allows assessing introgression rate in natural wildcat populations and is key for a better understanding of hybridization processes.  相似文献   

13.
Crossbreeding with free-ranging domestic cats is supposed to threaten the genetic integrity of wildcat populations in Europe, although the diagnostic markers to identify "pure" or "admixed" wildcats have never been clearly defined. Here we use mitochondrial (mt) DNA sequences and allelic variation at 12 microsatellite loci to genotype 128 wild and domestic cats sampled in Italy which were preclassified into three separate groups: European wildcats (Felis silvestris silvestris), Sardinian wildcats (Felis silvestris libyca), and domestic cats (Felis silvestris catus), according to their coat color patterns, collection localities, and other phenotypical traits, independently of any genetic information. For comparison, we included some captive-reared hybrids of European wild and domestic cats. Genetic variability was significantly partitioned among the three groups (mtDNA estimate of F(ST) = 0.36; microsatellite estimate of R(ST) = 0.30; P < 0.001), suggesting that morphological diversity reflects the existence of distinct gene pools. Multivariate ordination of individual genotypes and clustering of interindividual genetic distances also showed evidence of distinct cat groups, partially congruent with the morphological classification. Cluster analysis, however, did not enable hybrid cats to be identified from genetic information alone, nor were all individuals assigned to their populations. In contrast, a Bayesian admixture analysis simultaneously assigned the European wildcats, the Sardinian wildcats, and the domestic cats to different clusters, independent of any prior information, and pointed out the admixed gene composition of the hybrids, which were assigned to more than one cluster. Only one putative Sardinian wildcat was assigned to the domestic cat cluster, and one presumed European wildcat showed mixed (hybrid) ancestry in the domestic cat gene pool. Mitochondrial DNA sequences indicated that three additional presumed European wildcats might have hybrid ancestry. These four cats were sampled from the same area in the northernmost edge of the European wildcat distribution in the Italian Apennines. Admixture analyses suggest that wild and domestic cats in Italy are distinct, reproductively isolated gene pools and that introgression of domestic alleles into the wild-living population is very limited and geographically localized.  相似文献   

14.
Population density data on depleted and endangered wildlife species are essential to assure their effective management and, ultimately, conservation. The European wildcat is an elusive and threatened species inhabiting the Iberian Peninsula, with fragmented populations and living in low densities. We fitted spatial capture–recapture models on camera-trap data, to provide the first estimate of wildcat density for Portugal and assess the most influential drivers determining it. The study was implemented in Montesinho Natural Park (NE Portugal), where we identified nine individuals, over a total effort of 3,477 trap-nights. The mean density estimate was 0.032 ± 0.012 wildcat/km2, and density tended to increase with distance to humanized areas, often linked to lower human disturbance and domestic cat presence, with forest and herbaceous vegetation cover and with European rabbit abundance. Although, this density estimate is within the range of values estimated for protected areas elsewhere in the Iberian Peninsula, our estimates are low at the European level. When put in context, our results highlight that European wildcats may be living in low population densities across the Iberian Mediterranean biogeographic region. No phenotypic domestic or hybrid cats were detected, suggesting potentially low admixture rates between the two species, although genetic sampling would be required to corroborate this assertion. We provide evidence that Montesinho Natural Park may be a suitable area to host a healthy wildcat population, and thus be an important protected area in this species' conservation context.  相似文献   

15.
A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype–phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole‐genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom® myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high‐density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high‐resolution genomewide information.  相似文献   

16.
Continuous animal populations often become fragmented due to anthropogenic habitat alterations. These small, fragmented populations are fragile due to demographic and genetic factors, whereas immigration can enhance their long‐term viability. Previously, we showed that high philopatry affected the local dynamics of three small and remnant subpopulations of Northern Wheatears in The Netherlands. Here, we show that these three populations together with an additional larger population in the European lowlands are highly genetically differentiated based on 22 microsatellite markers. In contrast, we found no evidence for differentiation using two mitochondrial DNA markers. An IMa2 analysis indicates that gene flow has occurred regularly among our sampled populations. As immigration of colour‐ringed birds among our sampled populations is rare at best, our results suggest that the populations have recently become isolated from one another. Low dispersal rates in highly mobile birds may occur when suitable habitat becomes highly fragmented, and will accentuate stochastic demographic processes and inbreeding, both reducing population viability. As dispersal rates are low among populations of Northern Wheatears in The Netherlands, there is only a small probability of recolonization of habitat patches where populations have become locally extinct.  相似文献   

17.
Severe climatic changes during the Pleistocene shaped the distributions of temperate‐adapted species. These species survived glaciations in classical southern refuges with more temperate climates, as well as in western and eastern peripheral Alpine temperate areas. We hypothesized that the European wildcat (Felis silvestris silvestris) populations currently distributed in Italy differentiated in, and expanded from two distinct glacial refuges, located in the southern Apennines and at the periphery of the eastern Alps. This hypothesis was tested by genotyping 235 presumed European wildcats using a panel of 35 domestic cat‐derived microsatellites. To provide support and controls for the analyses, 17 know wildcat x domestic cat hybrids and 17 Sardinian wildcats (F. s. libyca) were included. Results of Bayesian clustering and landscape genetic analyses showed that European wildcats in Italy are genetically subdivided into three well‐defined clusters corresponding to populations sampled in: (1) the eastern Alps, (2) the peninsular Apennines, and (3) the island of Sicily. Furthermore, the peninsular cluster is split into two subpopulations distributed on the eastern (Apennine mountains and hills) and western (Maremma hills and lowlands) sides of the Apennine ridge. Simulations indicated Alpine, peninsular, and Sicilian wildcats were isolated during the Last Glacial Maximum. Population subdivision in the peninsula cluster of central Italy arose as consequence of a more recent expansions of historically or ecologically distinct European wildcat subpopulations associated with distinct the Continental or Mediterranean habitats. This study identifies previously unknown European wildcat conservation units and supports a deep phylogeographical history for Italian wildcats.  相似文献   

18.
The continuing decline in forest elephant (Loxodonta cyclotis) numbers due to poaching and habitat reduction is driving the search for new tools to inform management and conservation. For dense rainforest species, basic ecological data on populations and threats can be challenging and expensive to collect, impeding conservation action in the field. As such, genetic monitoring is being increasingly implemented to complement or replace more burdensome field techniques. Single‐nucleotide polymorphisms (SNPs) are particularly cost‐effective and informative markers that can be used for a range of practical applications, including population census, assessment of human impact on social and genetic structure, and investigation of the illegal wildlife trade. SNP resources for elephants are scarce, but next‐generation sequencing provides the opportunity for rapid, inexpensive generation of SNP markers in nonmodel species. Here, we sourced forest elephant DNA from 23 samples collected from 10 locations within Gabon, Central Africa, and applied double‐digest restriction‐site‐associated DNA (ddRAD) sequencing to discover 31,851 tags containing SNPs that were reduced to a set of 1,365 high‐quality candidate SNP markers. A subset of 115 candidate SNPs was then selected for assay design and validation using 56 additional samples. Genotyping resulted in a high conversion rate (93%) and a low per allele error rate (0.07%). This study provides the first panel of 107 validated SNP markers for forest elephants. This resource presents great potential for new genetic tools to produce reliable data and underpin a step‐change in conservation policies for this elusive species.  相似文献   

19.
The European wildcat (Felis silvestris silvestris) is a focal species for conservation in many European countries. After a severe population decline during the 19th century, many populations became extinct or isolated. Within Germany, suitable wildcat habitat is assumed to be highly fragmented. We thus investigated fine-scale genetic structure of wildcat populations in Central Germany across two major potential barriers, the Rhine River with its valley and a major highway. We analyzed 260 hair and tissue samples collected between 2006 and 2011 in the Taunus and Hunsrück mountain ranges (3,500 km2 study area). We identified 188 individuals by genotyping 14 microsatellite loci, and found significant genetic substructure in the study area. Both the Rhine River and the highway were identified as significant barrier to gene flow. While the long-term effect of the river has led to stronger genetic differentiation in the river compared to the highway, estimates of current gene flow and relatedness across barriers indicated a similar or even stronger barrier effect to ongoing wildcat dispersal of the highway. Despite these barrier effects, we found evidence for the presence of recent migration across both the river and the highway. Our study thus suggests that although wildcats have the capability of dispersal across major anthropogenic and natural landscape barriers, these structures still lead to an effective isolation of populations as reflected by genetic analysis. The results strengthen the need for currently ongoing national strategies of wildcat conservation aiming for large scale habitat connectivity.  相似文献   

20.
While the western populations of the wildcat ( Felis silvestris silvestris ) in Germany come into contact with wildcats in France and Switzerland, the eastern distribution area is geographically completely isolated and consists of scattered subpopulations. To investigate population structure, evolutionary relationships and degree of hybridization with domestic cats we analysed the mitochondrial control region of 86 cats in combination with 11 microsatellite loci of 149 cats. According to our microsatellite data, German wildcats are divided into two separate populations corresponding to the western and eastern distribution areas. We found no indication of a further subdivision of the eastern population. German wildcat populations are genetically distinct from domestic cats in the main, but we identified 18.4% of the whole wildcat sample as being of hybrid origin, corresponding to 4.2% of the eastern and 42.9% of the western wildcat population, and 2.7% of the domestic cat sample. The mitochondrial haplotypes form a network of three connected clusters and reveal a high level of genetic diversity, especially within the eastern population. Our findings are explained at best in terms of continuous introgression between domestic cats and wildcat populations and differing degrees of recent hybridization in the various populations. Future conservation efforts should focus on preserving the existing gene flow between the isolated distribution areas, but also on preventing the spread of hybrids and limiting the habitat alterations that lead to increased contact with domestic cats. In conclusion we discuss possible evolutionary reasons for the still traceable genetic integrity of the wildcat despite its long history of interbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号