首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

2.
Abstract. Hairless mice were continuously labelled with 10μCi of tritiated thymidine ([3H]TdR) every 4 h for 8 d, and the proportions of labelled basal and differentiating cells were recorded separately. the mitotic rate was measured by the stathmokinetic method and the cell cycle distributions were measured by flow cytometry of isolated basal cells at intervals during the labelling period. the mitotic rate of the [3H]TdR-injected animals did not deviate from control values during the first 5 d. Computer simulations of the data based on various mathematical models were made, and three main conclusions were obtained: (1) a large spread in transit times through the G1 phase was found, together with a very narrow distribution in maturation time of differentiating cells; (2) about 20% of the differentiating cells were estimated to leave the basal cell layer directly after mitosis. This is consistent with results obtained from different sets of data; and (3) during continuous labelling more than 90% of the cells are labelled during each passage through the S phase.  相似文献   

3.
Abstract. Cellular uptake of [3H]thymidine ([3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 × 10-18 mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10%× min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

4.
Abstract. We have studied carcinoma NT, a transplantable mouse adenocarcinoma of spontaneous origin. Cells labelled with [3H]thymidine ([3H]TdR) were restricted to a narrow zone around the periphery of this tumour and were also found in rings up to 50 μ m wide, around isolated blood vessels in the central necrotic area. Labelling with [3H]deoxyuridine ([3H]UdR), another DNA synthesis precursor, produced a very different pattern. The labelled zone around the periphery was much wider than with [3H]TdR, and [3H]UdR labelled cells were found up to 110 μ m from isolated vessels. [3H]iododeoxyuridine ([3H]IUdR) gave the same pattern of labelling as [3H]UdR. In the heavily labelled zone, within 1 mm of the tumour periphery, the labelling index (LI) was 51% after [3H]UdR or [3H]IUdR injection, and only 36% with [3H]TdR.
The data show that at least half of the DNA-synthesizing cells in this tumour did not incorporate [3H]TdR. Previous workers reported cell loss factors for carcinoma NT of 60% calculated from [3H]TdR labelling data and 30% from the rate of loss of [125I]UdR. The present work suggests that calculations based on [125I]UdR data are more likely to be accurate for carcinoma NT than those using [3H]TdR data.  相似文献   

5.
Abstract. The durations of the cell cycle and its component phases have been determined for the basal layer of the epidermis of the skin from the upper surface of the hind foot of the rat using single pulse [3H]-thymidine labelling and the percent labelled mitosis (PLM) technique. Rats of three age groups were used, namely 7, 14 and 52 weeks. The duration of DNA synthesis (Ts) and the G2 plus M phase (Tg2± m) were comparable in 7-week and 52-week-old rats ( P > 0–1). The major difference between 7-week and 52-week-old rats was in the duration of the G1 phase (Tg1). In 7-week-old rats Tg1 was 15.0 ± 0.8 h and in 52-week-old rats Tg1 was 31.2 ± 3.5 h. A consequence of this variation was that the overall duration of the cell cycle was longer in 52-week-old rats (53.9 ± 5.3 h) than in 7-week-old rats (30.1 ± 1.3 h).
Difficulties were found in fitting a simple curve to the PLM data for 14-week-old rats. This suggests that the proliferative cell population of the epidermis of rats of this age group may be heterogeneous. A satisfactory fit to the data was obtained using a computer model which assumed that the proliferative population of the epidermis of 14-week-old rats was a mixture of cells with cell cycle parameters the same as those of the 7-week and the 52-week-old rats. These two sub-populations of relatively slowly and rapidly proliferating cells were present in the ratio of 2:1.  相似文献   

6.
Abstract. In Snell dwarf mice, the influence of short-term treatment with human growth hormone (hGH) or thyroxine on the proliferative and sulphation activity of the proximal tibial growth plate was studied. By autoradiographic methods, the [3H]methylthymidine incorporation after a single injection was measured, after 2 hr incorporation time. the labelling index was calculated and the number of labelled mitoses was counted. In addition, the distribution of the labelled nuclei over the proliferating and degenerating zones was determined by continuous labelling for 25 and 73 hr.
In untreated dwarf mice after [3H]-methylthymidine administration, the number of labelled nuclei in the growth plate is low. Labelling occurs, as expected, mainly in the cells of the proliferative zones. the number of labelled nuclei in control dwarf mice was similar after 25 and 73 hr continuous labelling. This suggests that many cells are in a resting Go or prolonged G1 phase. Both hGH and T4 treatment induce a significant increase of the number of labelled nuclei per growth plate and of the number of mitoses. Since hormonal treatment induces a small number of mitoses after 2 hr incorporation of the label, the minimal G2 phase of the cell cycle is less than 2 hr. In addition, treatment with hGH and T4 stimulates chondrocytes in the zone of proliferative and hypertrophic cells to actively incorporate [35S]-sulphate.  相似文献   

7.
Abstract. The central zone of the rat lens epithelium, extending half way from the centre to the periphery of a whole mount preparation, normally has less than 1% of the cells in the cell cycle at any given time. Mechanical wounding initiates a burst of proliferation in the central zone. DNA synthesis begins 14 hr after wounding followed by mitosis 10 hr later. When [3H]TdR was applied at 2 hr prior to S phase, some moderately heavy and some light labelling was observed after the onset of S phase. When [3H]TdR was applied 5 hr before S phase (9 hr after wounding), all the cells were lightly labelled. Only small amounts of the label were available to these cells 5 hr after application. It is significant that there was labelling in this group because it indicates the persistence of relatively small intracellular pools of [3H]TdR for several hours after the initial 'pulse' labelling of cells. Determinations of the duration of S phase were based on the assumption that pulse labelling may be affected by the persistence of the pools of [3H]TdR and consequent light labelling of the cells.  相似文献   

8.
The labelling index (TLI) of the digestive mucosa of some fish species was determined following a pulse labelling with tritiated thymidine ([3H]TdR) and light microscopic autoradiography. In the oesophageal epithelium, proliferation was observed to occur in non mucus-secreting cells. In the intestine, both undifferentiated and absorptive cells incorporated [3H)TdR within 1 h after injection. Statistically significant differences in [3H]TdR incorporation were observed between the upper intestine region and both the middle and lower parts on the one hand, and between the middle and lower parts on the other hand. Mucus-secreting cells seemed unable to proliferate. In the stomach, significantly fewer labelled nuclei were counted; they were located in the isthmus epithelium. No significant difference was observed between the TLI of these regions in the different species.  相似文献   

9.
Abstract. Exposure of Farage, a human B-cell lymphoma line, to IL-4 for 3–11 days led to inhibition of tritiated thymidine ([3H]dT) uptake by the cells. Study of the incorporation of 5-bromodeoxyuridine by Farage cells showed that IL-4 reduced significantly the number of cells in the S phase of the cell cycle and increased the proportion of cells in the G1 phase. Limiting dilution analysis of proliferation demonstrated that IL-4 decreased the frequency of clone-forming cells by 40%. IL-4 did not reduce the viability of Farage cells. On the contrary, IL-4 diminished the spontaneous death of Farage cells in culture, as determined by pulse chase analysis of cells which were labelled with [3H]dT. Moreover, the pre-treatment of Farage cells with IL-4 prevented their death induced by exposure to a high dose of staurosporine. IL-4 abrogated the staurosporine-induced arrest of cells in the G2+ M phase and replaced it by accumulation of cells in the G1 phase. IL-4 protected Farage cells from the radioactive suicide caused by the uptake of [3H]dT by dividing cells. The cytokine failed to prevent the damage to Farage cells exerted by mitomycin C, which affected cellular DNA regardless of the phase of the cell cycle. The data obtained showed that IL-4 inhibited the division of B cells by arresting their progression through the early stages of the cell cycle. This inhibition of the cell efflux from G1 phase plays an important role in the protection against cell death during further stages of the cell cycle.  相似文献   

10.
Abstract. Although the rat salivary glands are deficient in acini at birth, acinar cells proliferate rapidly during the early post-natal period. The pattern of acinar cell proliferation was analysed in the parotid and submandibular glands of neonatal rats from day of birth until day 34. Mitotic and [3H]thymidine ([3H]TdR) labelling indices of the two glands show distinctly different patterns. Analysis of cell division in the rat parotid gland demonstrated a peak of mitotic index at 14 days (2.9 ± 0.4%) and labelling index at 16 days (25.2 ± 2.1%). Submandibular gland acinar cell proliferation reaches a zenith between 7–8 days; labelling index (14.2 ± 1.1%) and mitotic index (2.3 ± 0.3%). Cell proliferation decreases rapidly in both glands after reaching a peak in activity. Gland size increases more rapidly in the submandibular gland which correlates with the earlier shift from cell proliferation to differentiation which occurs in this organ. Circadian rhythms of [3H]TdR incorporation were also investigated in this study. A circadian rhythm of [3H]TdR incorporation into DNA occurs at 15 days after birth with a peak at 06.00 hours in both glands and a trough occurring at 15.00 hours in parotid gland and 18.00 hours in the submandibular gland. Determination of specific activity of DNA (ct/min per μg DNA) on days 8, 10, 12, 13, 14, 15, and 16 after birth at 06.00 and 15.00 hours indicated that a circadian rhythm in [3H]TdR incorporation into DNA began on day 14. The developmental switch from suckling to solid food may be an initiating factor in the sychronization of the circadian rhythm in cell proliferation.  相似文献   

11.
Abstract We describe a reproducible method for combining tritiated thymidine ([3H]TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues. The technique has been used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of [3H]TdR by a simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The significance that this inhibition has on prolongation of autoradiograph exposure times, to ensure that all cells that incorporate [3H]TdR are scored as positive, in particular the most lightly labelled cells, has been quantified.
The inhibition of uptake into DNA of [3H]TdR from 0.23 to 1.85 MBq (6.25 to 50 μCi) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in μCi per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of [3H]TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count.  相似文献   

12.
Abstract. The potential of different methods to investigate proliferative activity of cell populations was analysed for non-Hodgkin's lymphomas. Cells in S phase and all cycling cells were determined on cell suspensions obtained from fresh lymph node material by [3H]-thymidine autoradiography ([3H]TdR LI), a monoclonal antibody to bromodeoxyuridine (BrdU LI), and the monoclonal antibody Ki67. A good correlation was observed between the values of [3H]TdR LI and BrdU LI ( r s= 0.90; P < 0.01), [3H]TdR LI and S phase ( r s= 0.62; P < 0.01) and [3H]TdR LI and Ki67 ( r s= 0.64; P < 0.01) in individual lymphomas. Using the median values obtained from the different approaches as cut-off points to define slowly and rapidly proliferating tumours, the best agreement was observed between [3H]TdR LI and BrdU LI (91%) and poorer agreements, even though statistically significant, were observed between [3H]TdR LI and S phase (73%) or Ki67 (76%). In conclusion, the kinetic information derived from different approaches was more or less concordant and newly proposed approaches should be directly and carefully verified for their prognostic relevance before using them as alternatives to conventional methods.  相似文献   

13.
Abstract. We describe a double labelling method for estimating the duration of DNA synthesis (Ts) and the flux of cells into and from the S phase of the cell cycle, based on labelling with tritiated thymidine ([3H]TdR) followed by bromodeoxyuridine (BrdU) and combining immunohistological detection of BrdU with conventional autoradiography. In practice, the change in size of a window of double labelled cells occurs as the time interval between the two labels increases. In mouse tongue epithelium there is a marked circadian variation in the number of cells in DNA synthesis. From 0900 to 1500 h this labelling index (LI) falls, but from 2100 to 0300 h it increases. Our results show that the circadian decrease in LI is associated with a short Ts (5·8 ± 0·3 h), a high S phase efflux and an initially low influx of cells from G: into S. Conversely, the rising circadian LI is associated with a longer Ts (9.4 ± 0.1 h), an initially low efflux and a moderate to high influx. Two time-points exist on the circadian LI curve when influx and efflux rates change abruptly. At 0100 h the efflux rate rises from low (5 cells %/h) to high (15–16 cells %/h) and simultaneously the influx rate changes from high to low. Similarly at 1300–1400 h, efflux rate falls from high (19–20 cells %/h) to low (4–8 cells %/h) values and influx rates change from low to high. This double labelling method has revealed that the duration of DNA synthesis varies across the circadian cycle, as do influx and efflux values which generally fall within a discrete range of high or low values. The timing of the changes in flux suggests the presence of two 'control' points on the circadian LI cycle that were previously unrecognized.  相似文献   

14.
Abstract. The present experiments with [14C]-thymidine (TdR) and [3H]-bromo-deoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 µg g body weight-1 and that of BrdU is about 5·0 µg g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0-1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

15.
Protein synthesis during photoinduced, synchronous progression of the cell cycle in single-celled protonemata of the fern Adiantum capillus-veneris was studied by tracer techniques. Nuclei of the protonemata were labelled with 3H-thymidine during spore germination so that the amount of 3H incorporated into the TCA-insoluble fraction of the cells could be used as a measure of the cell number in each sample. The rate of the incorporation of 14C-amino acids into TCA-insoluble materials was not significantly varied at different stages of the cell cycle or by treatment with blue light. Extracts of cells labelled with 35S-methionine at various times after the transfer from red light condition (G0) to darkness (G1 to S) were analyzed by two-dimensional gel electrophoresis. At least 3 of about 200 spots showed significant changes in intensity on fluorograms. Spot A (molecular weight 20,000, isoelectric point 6.3) was detectable only in early G1, whereas spot B (molecular weight 19,500, isoelectric point 6.3) was found only in the late G1 and S phases. When the cells were exposed to blue light before the dark incubation, the times of disappearance of spot A and appearance of spot B were advanced depending upon the progression of the cell cycle but not upon the clock time.  相似文献   

16.
A detailed study of the cellular proliferation kinetics in interfollicular plucked and unplucked mouse skin has been made in Swiss albino mice, using tritiated thymidine autoradiography. Diurnal variations in mitotic and labelling indices were demonstrated in both systems.
The mean cell cycle times for unplucked and plucked skin were estimated by four different methods and found to be 100 ± 10 and 47 ± 3 hr respectively. Most of the difference was due to the shortening of G1 phase after plucking. Repeated labelling at intervals shorter than the DNA synthesis times resulted in all the basal layer cells becoming labelled, so that the growth fraction was unity, in unplucked and plucked skin.
A well-defined second wave of labelled mitoses was seen at about 100 hr after labelling the unplucked (i.e. normal) mouse skin.
A double labelling technique using 14C-TdR and 3H-TdR with a single layer of emulsion gave reasonable values for the duration of the DNA synthesis phase.  相似文献   

17.
Abstract. This report deals with the controversies of whether all germinative epidermal cells in human epidermis are in the cycling state and whether stimulated hyperproliferation of psoriatic epidermis is due to a shortening of the cell cycle time or to a recruitment of non-cycling germinative epidermal cells. Experiments were performed on human subjects in vivo . Continuous infusion of [3H]thymidine for 8½ days indicated that 40% of germinative epidermal cells reside in the non-cycling state. Proliferative stimulation by tape stripping indicated recruitment of non-cycling (G0) germinative epidermal cells in both normal and psoriatic skin, and a prolongation (rather than a shortening) of cell cycle traverse in activated psoriatic epidermal cells.  相似文献   

18.
Abstract. A circadian dependent delay in the incorporation of [3H]TdR into DNA, presumably due to variations in the intracellular pool of [3H]TdR derivatives, was found. It seems reasonable to relate this effect to a circadianally varying age distribution of cells in S phase.
At any given time the S phase cells showed large variations in DNA synthesis rate, but it was still possible to identify a mean diurnal variation in the DNA synthesis rate.
Differences in the ability of S phase cells to incorporate [3H]TdR are also discussed in relation to flow cytometrical measurements, and this contributes to the understanding of the commonly observed phenomenon that flow cytometry estimates of S-fractions are higher than those obtained with autoradiography.  相似文献   

19.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

20.
Abstract. The labelling index (LI) of myelocytes (M) after flash labelling of normal human bone marrow cells with [3H]-thymidine ([3H]TdR) is always lower that the LI obtained for myeloblasts (MB) and for promyelocytes (PM). This fact can be interpreted in two ways: it may mean that the duration of the G1 phase of the cell cycle is longer in M than in MB or PM, or it may mean that the proportion of cells in cycle, i.e., the growth fraction (GF), is lower in the M population than in MB or PM. the evolution of the LI and of the mean number of grains per cell was monitored in [3H]TdR-labelled normal bone marrow during in vitro incubation for 50 hr. the generation time, measured by the halving time of the mean number of grains per cell after flash labelling, was similar for M to that for MB and PM. During continuous labelling, the LI of MB and PM reached 1 and the LI value for M never rose to more than 50% of the values recorded for MB and PM after 30 hr. These findings give support to the second hypothesis, i.e., a lower GF in the M population. Good correlation was found between the LI of M and the proportion of mature polymorphonuclear cells in the bone marrow of normal subjects and of patients with chronic benign neutropenia or hyperleucocytosis. Variations in the M growth fraction could be a medium-term (2-3 days) regulatory factor in granulocyte production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号