首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A major turnover in planktonic foraminifera occurred across the Eocene/Oligocene (E/O) boundary. New drill holes through the E/O boundary in southern Tanzania contain extremely well-preserved and diverse assemblages of planktonic foraminifera. Here we document a 1.2 million year record of assemblages, diversity and stable isotope fluctuations through this critical interval, which is often dissolved and/or recrystallised in carbonate-rich facies. The E/O boundary is marked by the abrupt extinction of all five remaining species of the family Hantkeninidae and a distinct size reduction in the genus Pseudohastigerina. The boundary is preceded over a short stratigraphic interval by the extinction of Turborotalia cerroazulensis, Turborotalia cocoaensis and Turborotalia cunialensis. Quantitative analysis of planktonic foraminiferal assemblages reveals significant changes in the abundance of certain species and the composition of the assemblages. We compare diversity fluctuations to the stable isotope record of Pseudohastigerina naguewichiensis and use multispecies stable isotope analyses to determine the life habitats of the most important species. A major shift in the evenness occurs at ~ 33.8 Ma associated with the extinction of the T cerroazulensis group suggesting acute ecological disturbance. We propose that the extinction of the T. cerroazulensis group at ~ 33.8 Ma was directly related to cooling of sea surface temperatures, while the extinction of Hantkeninidae was due to modifications in the thermal structure of the oceans and associated productivity changes. After the extinctions, renewed origination and diversification occurred, leading to a characteristic Oligocene planktonic foraminifer assemblage.  相似文献   

2.
We studied planktic and small benthic foraminifera from the Fuente Caldera section, southern Spain, across the Eocene–Oligocene transition. Benthic foraminifera indicate lower bathyal depths for the late Eocene and earliest Oligocene. Detailed high-resolution sampling and biostratigraphical data allowed us to date precisely layers with evidence for meteorite impact (Ni-rich spinel), which occur in the lower part of the planktic foraminiferal Globigerapsis index Biozone and in the middle part of the small benthic foraminiferal Cibicidoides truncanus (BB4) Biozone (middle Priabonian, late Eocene). Major turnovers of foraminifera occur at the Eocene/Oligocene boundary, only. The impact did not occur at a time of planktic or benthic foraminiferal extinction events, and the late Eocene meteorite impacts did thus not cause extinction of foraminifera. The most plausible cause of the Eocene/Oligocene boundary extinctions is the significant cooling, which generated glaciation in Antarctica and eliminated most of the warm and surface-dwelling foraminifera.  相似文献   

3.
Planktic foraminiferal assemblages have been analyzed quantitatively in six DSDP sites in the Atlantic (Site 363), Pacific (Sites 292, 77B, 277), and Indian Ocean (Sites 219, 253) in order to determine the nature of the faunal turnover during Middle Eocene to Oligocene time. Biostratigraphic ranges of taxa and abundance distributions of dominant species are presented and illustrate striking similarities in faunal assemblages of low latitude regions in the Atlantic, Pacific and Indian oceans. A high resolution biochronology, based on dominant faunal characteristics and 55 datum events, permits correlation between all three oceans with a high degree of precision. Population studies provide a view of the global impact of the paleoclimatic and paleoceanographic changes occurring during Middle Eocene to Oligocene time.Planktic foraminiferal assemblage changes indicate a general cooling trend between Middle Eocene to Oligocene time, consistent with previously published oxygen isotope data. Major faunal changes, indicating cooling episodes, occur, however, at discrete intervals: in the Middle Eocene 44-43 Ma (P13), the Middle/Late Eocene boundary 41-40 Ma ( ), the Late Eocene 39-38 Ma ( ), the Eocene/Oligocene boundary 37-36 Ma (P18), and the Late Oligocene 31-29 Ma ( ). With the exception of the boundary, faunal changes occur abruptly during short stratigraphic intervals, and are characterized by major species extinctions and first appearances. The Eocene/Oligocene boundary cooling is marked primarily by increasing abundances of cool water species. This suggests that the boundary cooling, which marks a major event in the oxygen isotope record affected planktic faunas less than during other cooling episodes. Planktic foraminiferal faunas indicate that the boundary event is part of a continued cooling trend which began during the Middle Eocene.Two hiatus intervals are recognized in low and high latitude sections at the Middle/Late Eocene boundary and in the Late Eocene ( ). These hiatuses suggest that vigorous bottom water circulation began developing in the Middle Eocene, consistent with the onset of the faunal cooling trend, and well before the development of the psychrosphere at the boundary.  相似文献   

4.
A diverse, new lizard assemblage from the early Oligocene of Belgium is described. The Boutersem railway local fauna is the most species‐rich lizard assemblage yet reported from the European early Oligocene. Four lizard taxa are present: Lacertidae, Anguidae, Scincoidea and Platynota. One new species is described, Folisaurus boutersemensis sp. nov . This fauna provides new insight into the profound turnover that took place during the Eocene/Oligocene boundary in Europe. The new fauna confirms a marked decrease in diversity across the Eocene/Oligocene boundary. Two groups encountered in the European late Eocene became extinct (Iguanidae*, Glyptosaurinae). Estimates of species‐level extinctions range up to 80%. These estimates include members of virtually all the families present in the late Eocene. The relative importance of climate change and biotic interactions in controlling this pattern is discussed, and negative interactions between lizards and new carnivorous mammals are favoured. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 148–170.  相似文献   

5.
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle–Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between 78 and 71 m composite depth extending from the Early Miocene to the latest Miocene–Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene–Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene–Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.  相似文献   

6.
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified.Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in δ18O values coded as “Oi” and “Mi” events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific.Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.We also reviewed changes in other microfossil assemblages in the low latitudes during the late Oligocene through early Miocene. The microfossil assemblages of major groups show sequential changes near the Oligocene/Miocene (O/M) boundary (23.8 Ma). Many extinction events and some first occurrences of calcareous nannofossils and many occurrences of radiolarians are found from about 24.8 to 23.3 Ma, and first occurrences of planktic foraminifers and diatoms followed from 23.2 through 22 Ma. Hence, the O/M boundary is identified as a significant level for microfossil evolutions.  相似文献   

7.
In the late Pliocene–middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal–abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20–70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction?In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene–early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene–Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle–late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene–early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene–middle Pleistocene.Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.  相似文献   

8.
The evolution of the Southern Ocean climate during the late Eocene–late Oligocene interval is examined through high-resolution, quantitative calcareous nannofossil analyses on samples from the Southern Ocean sections on Maud Rise and Kerguelen Plateau. We determined the abundance patterns of the counted species to clarify the biostratigraphy, which we correlated with high-resolution magnetostratigraphy [Roberts, A.P., Bicknell, S.J., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003a. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene–Oligocene of Kerguelen Plateau (Ocean Drilling Program Sites 744 and 748). In: Florindo, F., Cooper, A.K., O'Brien, P.A. (Eds.), Antarctic Cenozoic Palaeoenvironments: Geologic Record and Models. Palaeogeogr., Palaeoclimatol., Palaeoecol. 198 145–168; Florindo, F., Roberts, A.P., in press. Eocene–Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull.], and used this data to interpret paleoceanographic changes through the late Eocene to late Oligocene. Percentage plots of the individual species, compared with R-mode principal component and cluster analysis results, allowed us to divide the assemblages into three groups: temperate-water taxa, cool-water taxa, and no temperature-affinity taxa. We attempt correlations between these paleoecological groups and the major sea-surface temperature (SST) variations with tectonic and paleoceanographic changes in the Southern Ocean. During the late Eocene, the nannofossil assemblage data reveal that there were several minor SST decreases (coolings) from 36 to 34 Ma, before the Eocene/Oligocene (E/O) boundary. A sharp cooling event, dated at 33.54 Ma (earliest Oligocene), occurred about 160 kyr after the E/O boundary, which is dated at 33.7 Ma. Relatively stable, cool conditions are interpreted to persist until the latest Oligocene, when an increase in abundance of temperate-water taxa, which corresponds to an antithetical decrease in abundance of cool-water indicators, is recorded.On the basis of our dating, the opening of the Drake Passage, allowing shallow-water circulation, began by 33.54 Ma at the latest, while the establishment of deep-water connections through the Tasmanian Gateway occurred at 33 Ma, as suggested by Exon et al. [Proc. ODP, Init. Rep. 189 (2001) 1].  相似文献   

9.
Benthic foraminifers in the size-fraction greater than 0.073 mm were studied in 88 Paleocene to Pleistocene samples from Deep Sea Drilling Project Site 525 (Hole 525A, Walvis Ridge, eastern south Atlantic). Clustering of the samples on the basis of the 86 most abundant foraminifers (in total, 331 taxa were identified) allowed separating two major assemblage zones: the Paleocene to Eocene interval, and the Oligocene to Pleistocene interval. Each of these, in turn, were subdivided into three minor subzones as follows: lower upper Paleocene (approx. 62.4 to 57.8 Ma); upper upper Paleocene (56.6 to 56.2 Ma); lower and middle Eocene (55.3 to 46.8 Ma); upper Oligocene to middle Miocene (25.3 to 16 Ma); middle Miocene to Pliocene (15.7 to 4.2 Ma); and lower Pleistocene (0.4 to 0.02 Ma), with only minor differences with the previous zone. Some very abundant taxa span most of the column studies (Bolivina huneri, Cassidulina subglobosa, Eponides bradyi, E. weddellensis, Gavelinella micra, Oridorsalis umbonatus, etc.). Several of the faunal breaks recorded coincide with conspicuous minima in the specific diversity curve, thus suggesting that the corresponding turnovers signal the final stages of periods of faunal impoverishment. At least one major bottom-water temperature drop (as derived from δ18O data) is synchronous with a decrease in the foraminiferal specific diversity. On the other hand, a specific diversity maximum in the middle Miocene might be associated with a δ13C increase at approx. 16 to 12 Ma. Highest foraminiferal abundances (up to 600–800 individuals per gram of dry sediment) occurred in the late Paleocene and in the early Pleistocene, in coincidence with the lowest diversity figures calculated. The magnitude of the most important faunal turnover recorded, between the middle Eocene and the late Oligocene, is magnified in our data set by the large hiatus which separates the middle Eocene from the upper Oligocene sediments. Considerably smaller overturns occurred within the late Paleocene (in coincidence with changes in the specific diversity, absolute abundance of foraminiferal tests, and δ13C), and in the middle Miocene (in coincidence with a specific diversity maximum and a δ13C excursion). New information on the morphology and the stratigraphic ranges of several species is furnished. For all the taxa recorded the number of occurrences, total number of individuals identified and first and last appearances are listed.  相似文献   

10.
Eocene-Oligocene deep-sea benthonic foraminifera in D.S.D.P. Site 277 in the southwest Pacific have been analyzed to determine the benthonic foraminiferal response to the development of the psychrosphere near the Eocene/Oligocene boundary. Biostratigraphic ranges of 41 taxa show that 23 taxa are found throughout the Late Eocene to Early Oligocene sequence, while 18 taxa exhibit first or last occurrences. Comparison of the faunal changes in Site 277 with a benthonic foraminiferal oxygen isotope record shows that the development of the psychrosphere did not have a profound effect upon the benthonic foraminifera, and the overall faunal change preceding and subsequent to the bottom-water circulation event occurred gradually. The inferred water-mass event affected the relative abundance of one species, Epistominella umbonifera. The lack of major faunal changes at the Eocene/Oligocene boundary in Site 277 probably reflects either wide environmental tolerances of the benthonic foraminifera, or a bottom-water temperature change less than 3°C.Examination of previously published benthonic foraminiferal biostratigraphic data from D.S.D.P. Sites 167, 171, 357, 360, 363, and 400A, and deep-sea ostracode data from D.S.D.P. Leg 3 show faunal changes occurred during discrete intervals in the Middle Eocene-Early Oligocene. The faunal patterns from these data and from Site 277 show that the Eocene/Oligocene cooling event did not cause rapid, catastrophic changes of the benthonic faunas of the open ocean, although significant faunal changes are associated with the water mass event in Sites 167, 171 and 400A.The benthonic faunal changes in Middle Eocene-Early Oligocene time are consistent with the gradual decrease of inferred bottom-water temperatures, based on previously published oxygen isotopic data. The δ 18O Eocene/Oligocene enrichment of 0.76‰ is a major event in the Southern Ocean oxygen isotopic record, but is considerably less in magnitude than the 1.75-2.00‰ change that occurred gradually from mid-Early Eocene to the Eocene/Oligocene boundary. The benthonic foraminiferal and isotopic data indicate that bottom-water circulation may have developed during the Middle Eocene to Early Oligocene interval, with the 3°C bottom-water cooling near the Eocene/Oligocene boundary representing part of this development.  相似文献   

11.
Cenozoic palaeoceanography of the Maude Rise, Weddell Sea, Antarctica, has been investigated using Palaeocene to Quaternary deep-sea ostracod faunas from 23 samples of ODP Site 689. The abundance of ostracods is high enough only during the Palaeogene (Palaeocene-Oligocene) to allow palaeoceanographical inferences based on changes in diversity, dominance, endemism and faunal turnover (first and last occurrences). The abundance is particularly high throughout the Palaeocene and Eocene, but declines irreversibly near the Eocene/Oligocene boundary. The diversity increases more or less continuously from the Early Palaeocene to the Middle Eocene, and then it generally decreases throughout the remaining part of the Palaeogene (Middle Eocene-Oligocene); an exception is a positive peak in the Shannon-Weaver index in a single sample in the Late Oligocene. No positive peaks in diversity and taxa originations (first occurrences) at c. 40-38 Ma, occurs at Site 689; so the site provides no evidence for the establishment of the psychrosphere at this time. This corroborates similar regional results from an earlier study of benthonic foraminifera. Explanations for this may be related to Late Eocene-Early Oligocene changes in sedimentology and clay-mineralogy (associated with the progressive cooling of the Antarctica) which could have negatively affected abundance and diversity locally at Site 689. Alternatively, by this time, the ostracod fauna could also have been subjected to selective removal (with possible local extinction) of taxa (due to increased ventilation) or to thanatocoenosis dissolution (due to a decrease in temperature and availability of CaCO3). A further possibility may be related to the fact that Site 689 was at intermediate water depths and may have remained within older water masses near the Eocene/Oligocene boundary. Failing these explanations, the results could indicate that the Late Eocene-Early Oligocene palaeoenvironmental changes in the world oceans were more gradual and occurred over a longer time interval than the global ostracod data show, at least at southern high latitudes.  相似文献   

12.
A major change in benthic foraminiferal assemblages occurred in the deep Bay of Biscay (> 3 km water; DSDP Sites 119, and Site 400A) between early middle Eocene and earliest Oligocene. Predominant Eocene deep-sea taxa (Nuttallides truempyi, Clinapertina spp., Abyssamina spp.) and associated rarer species became extinct in this interval. These extinctions were followed by an increase in abundance of bathymetrically wide-ranging and stratigraphically long-ranging taxa: Globocassidulina subglobosa, Oridorsalis spp., Gyroidinoides spp., and the Cibicidoides ungerianus plexus. The extinctions cannot be dated precisely from the stratigraphic record recovered to date in the Bay of Biscay; however, the replacement of the N. truempyi-dominated assemblage has been noted previously in the deep South Atlantic/Caribbean as occurring near the middle/late Eocene boundary. Other than the decrease in abundance and extinction of N. truempyi, no major abundance changes are noted within the Eocene at the shallower Site 401 (~ 2 km water) in the Bay of Biscay. During the Oligocene, Nuttallides umbonifera replaced the Eocene species N. truempyi as the predominant deep-sea benthic foraminifera, reaching peak abundance in the middle Oligocene at Sites 119 and Site 400A. In the modern oceans, the abundance ot N. umbonifera is positively correlated with increased corrosiveness of bottom water, while at Site 119 the abundance of Nuttallides spp. is negatively correlated with δ 13C values in benthic foraminifera. As lower δ 13C values are often associated with older water masses, large numbers of Nuttallides spp. are thought to reflect older, and more corrosive bottom water. The faunal data and oxygen and carbon isotopic data are compared with a circulation model derived from North Atlantic seismic stratigraphic studies to show that old, warm, corrosive, and sluggish Eocene bottom water was replaced by younger, colder, less corrosive, more vigorously circulating bottom water of northern origin by the early Oligocene. Faunal and isotopic data suggest that bottom water became older and more corrosive again in the middle Oligocene, reflecting a reduction in circulation that can also be inferred from the seismic record in the nearby Rockall Plateau region.  相似文献   

13.
Different authors working in the Mediterranean area have reported a distinctive change in the assemblages of keeled globorotaliids coinciding with the FAD ofGloborotalia conomiozea Kennett. This change which has now been observed in the Guadalquivir basin consists of the abrupt disappearance of the “Globorotalia menardii” group, which is then replaced by theGloborotalia miotumida group.This event has been found in a number of areas of the Atlantic Ocean and it is proposed that it can be used to recognize the Tortonian-Messinian boundary in this realm whereG. conomiozea occurs only sporadically.  相似文献   

14.
The two Early Toarcian (Early Jurassic) extinction events in ammonoids   总被引:2,自引:0,他引:2  
The Early Toarcian (Early Jurassic) biological crisis was one of the ‘minor’ mass extinctions. It is linked with an oceanic anoxic event. Fossil data from sections located in northwestern European (epicontinental platforms and basins) and Tethyan (distal, epioceanic) areas indicate that Late Pliensbachian–Early Toarcian ammonoids experienced two extinction events during the Early Toarcian. The older one is linked with disruption of the Tethyan–Boreal provinciality, whereas the younger event correlates with the onset of anoxia and corresponds with the Early Toarcian mass‐extinction event. These two extinctions cannot be interpreted as episodes of a single, stepwise, event. Values of the net diversification, more than the number of extinctions, allow the two extinction events to be clearly recognized and distinguished. Values of regional net diversification for northwestern European and Tethyan faunas point to greater evolutionary dynamics in the epioceanic areas. The inclusion of Mediterranean faunas in the database proves that the ammonite turnover at the Early Toarcian mass‐extinction event was more important than previously thought. Progenitor (evolute Neolioceratoides), survivor (Dactylioceras, Polyplectus pluricostatus) and Lazarus (Procliviceras) taxa have been recognized. Different selectivity patterns are shown for the two events. The first one, linked to the disruption of the Tethyan–Boreal provinciality, has mainly affected ammonites adapted to epicontinental platforms. In the mass‐extinction event, no selectivity is recognized, because also Phylloceratina and Lytoceratina were deeply affected at species level, although their wide biogeographical distribution at clade level was a significant buffer against extinction. In contrast to Palaeozoic mass extinctions, ammonoid survivors and Lazarus taxa are characterized by complex sutures: Phylloceratina (long‐ranging ammonoids) and Polyplectus (relatively long‐ranging compared to other Ammonitina).  相似文献   

15.
The most severe mass extinction of marine species and terrestrial vertebrates and plants is associated with the Permian-Triassic boundary (∼251 Ma). The extinction interval is also marked by the disappearance of most Late Permian gymnosperm palynomorphs at a layer containing solely the abundant remains of fungi. This ‘fungal spike’ apparently represents widespread devastation of arboreous vegetation. Stratigraphic and palynological study of the Carlton Heights section in the southern Karoo Basin of South Africa revealed a 1-m-thick fungal spike zone that occurs simultaneously with the last appearance of typically Late Permian gymnosperm pollen. The plant extinction and fungal spike zone are found above the last occurrence of Late Permian mammal-like reptiles of the Dicynodont Zone at other Karoo sections. Using the fungal event as a time line in marine and non-marine sections allows placement of the marine extinctions and the extinction of terrestrial plants and reptiles within a brief crisis interval of less than about 40?000 years at the end of the Permian.  相似文献   

16.
Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene–Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66–23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50–37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift.  相似文献   

17.
Evolution of the planktic foraminiferal lineageGloborotalia (Fohsella) occurred during the Miocene between 23.7 and 11.8 Ma and forms the basis for stratigraphic subdivision of the early middle Miocene (Zones N10 through N12). Important morphologic changes within theG. (Fohsella) lineage included a marked increase in test size, a transition from a rounded to an acute periphery, and the development of a keel in later forms. We found that the most rapid changes in morphology ofG. (Fohsella) occurred between 13 and 12.7 Ma and coincided with an abrupt increase in the δ18O ratios of shell calcite. Comparison of isotopic results ofG. (Fohsella) with other planktic foraminifers indicate that δ18O values of the lineage diverge from surface-dwelling species and approach deep-dwelling species after 13.0 Ma, indicating a change in depth habitat from the surface mixed layer to intermediate depth near the thermocline. Isotopic and faunal evidence suggests that this change in depth stratification was associated with an expansion of the thermocline in the western equatorial Pacific. After adapting to a deeper water habitat at 13.0 Ma, theG. (Fohsella) lineage became extinct abruptly at 11.8 Ma during a period when isotopic and faunal evidence suggest a shoaling of the thermocline. Following the extinction ofG. (Fohsella), the ecologic niche of the lineage was filled by theGloborotalia (Menardella) group, which began as a deep-water form and later evolved to an intermediate-water habitat. We suggest that the evolution ofG. (Fohsella) andG. (Menardella) were tightly linked to changes in the structure of the thermocline in the western equatorial Pacific.  相似文献   

18.
A major deterioration in global climate occurred through the Eocene–Oligocene time interval, characterized by long-term cooling in both terrestrial and marine environments. During this long-term cooling trend, however, recent studies have documented several short-lived warming and cooling phases. In order to further investigate high-latitude climate during these events, we developed a high-resolution calcareous nannofossil record from ODP Site 748 Hole B for the interval spanning the late middle Eocene to the late Oligocene (~ 42 to 26 Ma). The primary goals of this study were to construct a detailed biostratigraphic record and to use nannofossil assemblage variations to interpret short-term changes in surface-water temperature and nutrient conditions. The principal nannofossil assemblage variations are identified using a temperate-warm-water taxa index (Twwt), from which three warming and five cooling events are identified within the middle Eocene to the earliest Oligocene interval. Among these climatic trends, the cooling event at ~ 39 Ma (Cooling Event B) is recorded here for the first time. Variations in fine-fraction δ18O values at Site 748 are associated with changes in the Twwt index, supporting the idea that significant short-term variability in surface-water conditions occurred in the Kerguelen Plateau area during the middle and late Eocene. Furthermore, ODP Site 748 calcareous nannofossil paleoecology confirms the utility of these microfossils for biostratigraphic, paleoclimatic, and paleoceanographic reconstructions at Southern Ocean sites during the Paleogene.  相似文献   

19.
Exposures across the Cretaceous-Tertiary (K-T) and Eocene-Oligocene (E-O) boundaries, in Texas and Mississippi, respectively, probably represent the most complete and best-preserved fossil molluscan sequences across these boundary intervals in the world. Outcrops from both boundaries contain pristine aragonitic and calcitic molluscan shells, which were deposited in fine-grained sediments from open marine environments. The K-T and the E-O extinctions exhibit very different recovery patterns, probably reflecting very different causes as well as magnitudes of extinction.The K-T sequence contains a molluscan fossil record that is consistent with an abrupt extinction event at the K-T boundary and a prolonged initial recovery in hostile oceanographic conditions. The uppermost 10 m of Upper Cretaceous sediments contain a diverse (approximately 40 species) molluscan fauna dominated by suspension feeders. The earliest Paleocene sediments immediately above the tsunami bed contain an impoverished fauna dominated by deposit feeders. The Paleocene fauna slowly climbs in diversity but remains relatively impoverished and dominated by deposit feeders for several hundred thousand years after the extinction in conjunction with anomalous δ13C values that suggest prolonged suppression of marine primary productivity. Diverse suspension-feeder dominated molluscan assemblages reappear with the resumption of normal conditions of primary production. In the long term, early to middle Paleocene gamma diversity includes evolutionary “bloom taxa,” families that exhibit unusual speciation bursts that subside in the Eocene. Total diversity for the Gulf Coast does not approach Cretaceous levels until the Late Eocene representing a total recovery interval of nearly 25 million years.While the E-O event also reflects a molluscan extinction rate of over 90% in the Gulf of Mexico, there are no signs of hostile environmental conditions in the recovery fauna. Early Oligocene molluscan assemblages are diverse and dominated by suspension feeders characteristic of normal marine conditions. The hiatus at the E-O boundary, however, could have obscured a short-term recovery fauna. There is also no sign of long-term perturbation by the E-O extinction. There are no bloom taxa and gamma diversity approaches pre-extinction levels within a few million years. The overall pattern of the E-O extinction is consistent with extinction (and/or migration) associated with long-term cooling.  相似文献   

20.
《Comptes Rendus Palevol》2016,15(7):791-812
The land mammal record of the Vallès-Penedès Basin (Catalonia, NE Spain) ranges from the early Miocene (Ramblian) to the late Miocene (Turolian), that is from about 20 to 7 Ma. Here we present an updated review of the mammal succession focusing on biochronology as well as on environmental and faunal changes. Based on faunal similarities with central Europe, we interpret this basin as a transitional zone between the forested environments of northern regions and the more arid landscapes of the inner Iberian Peninsula. The quality of the Vallès-Penedès record and its chronostratigraphic control is clearly better for the late Aragonian and the Vallesian (between 12.6–9.0 Ma), especially for small mammals. Therefore, we analyze small mammal diversity dynamics during this interval. Contrary to previous analyses, which found an abrupt extinction event coinciding with the early/late Vallesian boundary (the Vallesian Crisis), our results show that this pattern is due to uneven sampling. Instead, taxonomic richness slowly decreased since the late Vallesian as a result of a series of extinctions that mostly affected forest-dwelling taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号