首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The 876-aa protein AreA regulates the expression of numerous genes involved in nitrogen metabolism in Aspergillus nidulans, and interacts with GATA sequences upstream of the relevant genes. We have carried out limited proteolysis of the C-terminal domain of the AreA protein in order to identify possible structural domains within the protein. A stable 156-amino-acid fragment was identified that contained the zinc finger region, and this sequence was cloned and expressed in E. coli. Fluorescence spectroscopy of the purified protein showed that the proteolytic domain was folded and could be denatured by high concentrations of urea (approximately 4 M), exhibiting a sharp transition. Fluorescence spectroscopy was also used to monitor binding to a DNA duplex containing the AreA recognition site, demonstrating tight binding of the domain to its DNA recognition sequence. The DNA binding affinity of the domain is comparable with that of the native AreA protein and much higher than that of the minimal zinc finger region of AreA.  相似文献   

15.
16.
17.
18.
OmpR is the response regulator of a two-component regulatory system that controls the expression of the porin genes ompF and ompC in Escherichia coli. This regulator consists of two domains joined by a flexible linker region. The amino-terminal domain is phosphorylated by the sensor kinase EnvZ, and the carboxyl-terminal domain binds DNA via a winged helix-turn-helix motif. In vitro studies have shown that amino-terminal phosphorylation enhances the DNA binding affinity of OmpR and, conversely, that DNA binding by the carboxyl terminus increases OmpR phosphorylation. In the present work, we demonstrate that the linker region contributes to this communication between the two domains of OmpR. Changing the specific amino acid composition of the linker alters OmpR function, as does increasing or decreasing its length. Three linker mutants give rise to an OmpF(+) OmpC(-) phenotype, but the defects are not due to a shared molecular mechanism. Currently, functional homology between response regulators is predicted based on similarities in the amino and carboxyl-terminal domains. The results presented here indicate that linker length and composition should also be considered. Furthermore, classification of response regulators in the same subfamily does not necessarily imply that they share a common response mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号