首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A study of the random motility and chemotaxis of Methylosinus trichosporium OB3b was conducted by using Palleroni-chamber microcapillary assay procedures. Under the growth conditions employed, this methanotroph was observed qualitatively with a microscope to be either slightly motile or essentially nonmotile. However, the cells did not not respond in the microcapillary assays in the manner expected for nonmotile Brownian particles. As a consequence, several hydrodynamic effects on these Palleroni microcapillary assays were uncovered. In the random-motility microcapillary assay, nondiffusive cell accumulations occurred that were strongly dependent upon cell concentration. An apparent minimal random-motility coefficient (mu) for this bacterial cell of 1.0 x 10(-7) cm2/s was estimated from microcapillary assays. A simple alternative spectrophotometric assay, based upon gravitational settling, was developed and shown to be an improvement over the Palleroni microcapillary motility assay for M. trichosporium OB3b in that it yielded a more-accurate threefold-lower random-motility coefficient. In addition, it provided a calculation of the gravitational-settling velocity. In the chemotaxis microcapillary assay, the apparent chemotactic responses were strongest for the highest test-chemical concentrations in the microcapillaries, were correlated with microcapillary fluid density, and were strongly dependent upon the microcapillary volume. A simple method to establish the maximal concentration of a chemical that can be tested and to quantify any contributions of abiotic convection is described. Investigators should be aware of the potential problems due to density-driven convection when using these commonly employed microcapillary assays for studying cells which have low motilities.  相似文献   

2.
The interpretation of quantitative assays for leukocyte chemotactic migration is usually made in terms of measurements such as leading front distance, total migrating cells, and leukotactic index. These quantities allow comparison of cellular migration behavior under specified conditions. They are not useful; however, for comparisons between systems or for correlation with in vivo performance, because they depend upon specific physical aspects of the assay system, such as the geometry, chemoattractant concentration and diffusivity, and observation time. It would be more helpful to measure intrinsic properties of cell movement that could be used for comparison between systems, for correlation with in vivo studies, and to increase our understanding of the cell physiology. In this paper we demonstrate a means of quantitating leukocyte random motility, chemokinesis, and chemotaxis in terms of parameters that do characterize intrinsic cell properties. These parameters are the random motility coefficient and the chemotaxis coefficient, which appear in theoretical models of cell migration. We examine how well such a model describes the leukocyte density profile data observed in a modified under-agarose assay having a linear geometry. Furthermore, we obtain values for the random motility coefficient (and its dependence upon the concentration of the attractant peptide FNLLP) and for the chemotaxis coefficient for leukocytes responding to FNLLP.  相似文献   

3.
4.
Quantitative assay for algal chemotaxis.   总被引:2,自引:0,他引:2       下载免费PDF全文
A quantitative capillary assay is described for measuring chemoreception in the neritic and littoral unicellular alga Dunaliella tertiolecta. Lucite chemotaxis plates were used in the assay with 3-microliter capillaries. A Coulter Counter was employed to determine algal cell numbers. D. tertiolecta is attracted to ammonium ion with a maximum positive response at 10(-3) M. Inclusion of calcium and L-methionine in the chemotaxis medium stimulates algal chemoreception, although neither chemical is essential for motility. Attraction of the chlorophyte to ammonium is dependent on time of incubation, cell density, and pH. The optimum pH for attraction was found to be 6.25.  相似文献   

5.
Quantitative assay for algal chemotaxis.   总被引:1,自引:0,他引:1  
A quantitative capillary assay is described for measuring chemoreception in the neritic and littoral unicellular alga Dunaliella tertiolecta. Lucite chemotaxis plates were used in the assay with 3-microliter capillaries. A Coulter Counter was employed to determine algal cell numbers. D. tertiolecta is attracted to ammonium ion with a maximum positive response at 10(-3) M. Inclusion of calcium and L-methionine in the chemotaxis medium stimulates algal chemoreception, although neither chemical is essential for motility. Attraction of the chlorophyte to ammonium is dependent on time of incubation, cell density, and pH. The optimum pH for attraction was found to be 6.25.  相似文献   

6.
The capillary assay for quantitative characterization of bacterial motility and chemotaxis is analyzed in terms of a mathematical model for cell population migration, in order to determine values for the cell random motility coefficient, mu and the cell chemotaxis coefficient, chi. The analysis involves both analytical perturbation methods and numerical finite-difference techniques. Transient cell density profiles within the capillary tube are determined as they depend upon mu and chi, providing a means for estimating mu and chi from the common protocol measurements of cell accumulation in the tube at specified observation times. The effects of extraneous factors such as assay geometry, stimulus diffusivity, bacterial density, and observation time are thus separated from the intrinsic cell-stimulus interaction and response. This allows independent population measurements of cell chemosensory movement properties to be extrapolated to situations involving growth and competition of populations, for purposes of better understanding microbial population dynamics in systems of biotechnological and microbial ecological importance.  相似文献   

7.
The nucleotide sequence of the Bacillus subtilis fliM gene has been determined. This gene encodes a 38-kDa protein that is homologous to the FliM flagellar switch proteins of Escherichia coli and Salmonella typhimurium. Expression of this gene in Che+ cells of E. coli and B. subtilis interferes with normal chemotaxis. The nature of the chemotaxis defect is dependent upon the host used. In B. subtilis, overproduction of FliM generates mostly nonmotile cells. Those cells that are motile switch less frequently. Expression of B. subtilis FliM in E. coli also generates nonmotile cells. However, those cells that are motile have a tumble bias. The B. subtilis fliM gene cannot complement an E. coli fliM mutant. A frameshift mutation was constructed in the fliM gene, and the mutation was transferred onto the B. subtilis chromosome. The mutant has a Fla- phenotype. This phenotype is consistent with the hypothesis that the FliM protein encodes a component of the flagellar switch in B. subtilis. Additional characterization of the fliM mutant suggests that the hag and mot loci are not expressed. These loci are regulated by the SigD form of RNA polymerase. We also did not observe any methyl-accepting chemotaxis proteins in an in vivo methylation experiment. The expression of these proteins is also dependent upon SigD. It is possible that a functional basal body-hook complex may be required for the expression of SigD-regulated chemotaxis and motility genes.  相似文献   

8.
A number of individual-cell and population-scale assays have been introduced to quantify bacterial motility and chemotaxis. The transport coefficients reported in the literature, however, span several orders of magnitude, making it difficult to ascertain to what degree variations in bacterial species/strain, growth medium, growth and experimental conditions, and experiment type contribute to the reported differences in coefficient values. We quantified the random motility of Escherichia coli AW405 using the capillary assay, stopped-flow diffusion chamber (SFDC), and tracking microscope. We obtained good agreement for the random motility coefficient between these assays when using the same bacterial strain and consistent growth and experimental conditions. Chemotaxis of E. coli toward the attractant alpha-methylaspartate was quantified using the SFDC and capillary assay. Good agreement for the chemotactic sensitivity coefficient between the SFDC and the capillary assay was obtained across a limited attractant concentration range. Three different mathematical models were considered for analyzing capillary assay data to obtain a chemotactic sensitivity coefficient. These models differed by their treatment of the bacterial concentration in the chamber and the attractant concentration at the mouth. Results from our study indicate that the capillary assay, the most commonly used bacterial random motility and chemotaxis assay, can be used to accurately quantify bacterial transport coefficients over a limited range of attractant concentrations, provided experiments are performed carefully and appropriate mathematical models are used to interpret the experimental data.  相似文献   

9.
Current in vitro assays used in assessing tumor motility could be improved by the development of a simple technique that would facilitate studies of the impact of specific genes on pharmacologically altered chemotaxis. We developed a technique that improves on the classic transwell assay by using fluorescence and luminescence to assess chemotaxis. In this transient transfection system, co-transfection of a reporter construct and a gene with an unknown impact on motility are coupled with biochemical assays to quantitate the number of cells that have received a transferred gene, which subsequently crosses the membrane. This assay was found to be less variable than the conventional transwell chamber and is easily adaptable to studies of cell motility or cell invasion. We also demonstrate that this assay can detect the effect of both genetic and pharmacological inhibition of motility alone and in combination. It therefore has the potential to reveal additive or synergistic effects.  相似文献   

10.
Tethered-cell and capillary assays indicated that L-methionine is required by Cellulomonas gelida for its normal cell motility pattern and chemotaxis and that S-adenosylmethionine is involved in sugar chemotaxis by this cellulolytic bacterium. In addition, in vivo methylation assays showed that several proteins were methylated in the absence of protein synthesis. The incorporated methyl groups were alkali sensitive. Of special interest was the observation that the methylation level of a 51,000-Mr protein increased two- to fivefold upon addition of various sugar attractants and decreased after the removal of the attractants. The increase was less pronounced in mutants defective in sugar chemotaxis and appeared to be specifically involved with sugar chemotaxis. Furthermore, cell fractionation and in vitro methylation assays demonstrated that the 51,000-Mr protein is located in the cytoplasmic membrane. These results suggest that a specific methyl-accepting chemotaxis protein is involved in multiple-sugar chemotaxis by C gelida. During chemotaxis, the changes of methylesterase activity in C gelida cells were similar to those in Escherichia coli RP437 cells, as determined by a continuous-flow assay for methanol evolution. Thus, the mechanism of methyl-accepting chemotaxis protein-mediated chemotaxis of the gram-positive C. gelida appears to be similar to that of the gram-negative E. coli rather than to that of other gram-positive bacteria, such as Bacillus subtilis.  相似文献   

11.
The polychlorinated biphenyl (PCB)-degrading Pseudomonas sp. B4 was tested for its motility and ability to sense and respond to biphenyl, its chloroderivatives and chlorobenzoates in chemotaxis assays. Pseudomonas sp. B4 was attracted to biphenyl, PCBs and benzoate in swarm plate and capillary assays. Chemotaxis towards these compounds correlated with their use as carbon and energy sources. No chemotactic effect was observed in the presence of 2- and 3-chlorobenzoates. Furthermore, a toxic effect was observed when the microorganism was exposed to 3-chlorobenzoate. A nonmotile Pseudomonas sp. B4 transformant and Burkholderia xenovorans LB400, the laboratory model strain for PCB degradation, were both capable of growing in biphenyl as the sole carbon source, but showed a clear disadvantage to access the pollutants to be degraded, compared with the highly motile Pseudomonas sp. B4, stressing the importance of motility and chemotaxis in this environmental biodegradation.  相似文献   

12.
Earlier experiments have shown that when Methylosinus trichosporium OB3b was grown at 30 degrees C, greater growth and degradation of chlorinated ethenes was observed under particulate methane monooxygenase (pMMO)-expressing conditions than sMMO-expressing conditions. The effect of temperature on the growth and ability of methanotrophs to degrade chlorinated ethenes, however, has not been examined, particularly temperatures more representative of groundwater systems. Thus, experiments were performed at 20 degrees C to examine the effect of mixtures of trichloroethylene, trans-dichloroethylene and vinyl chloride in the presence of methane on the growth and ability of Methylosinus trichosporium OB3b cells to degrade these pollutants. Although the maximal rates of chlorinated ethane degradation were greater by M. trichosporium OB3b expressing sMMO as compared with the same cell expressing pMMO, the growth and ability of sMMO-expressing cells to degrade these cosubstrates was substantially inhibited in their presence as compared with the same cell expressing pMMO. The Delta model developed earlier was found to be useful for predicting the effect of chlorinated ethenes on the growth and ability of M. trichosporium OB3b to degrade these compounds at a growth temperature of 20 degrees C. Finally, it was also discovered that at 20 degrees C, cells expressing pMMO exhibited faster turnover of methane than sMMO-expressing cells, unlike that found earlier at 30 degrees C, suggesting that temperature may exert selective pressure on methanotrophic communities to express sMMO or pMMO.  相似文献   

13.
de la Monte SM  Lahousse SA  Carter J  Wands JR 《BioTechniques》2002,33(1):98-100, 102, 104 passim
Directional motility and invasion assays are largely based on the use of Boyden chambers or Transwell culture inserts in which porous membranes separate seeded cells from a chemotactic factor supplied in the medium outside the chamber. The major obstaclefor most currently available assays is that they lack a sensitive, easy, and reliable method of quantifying the nonmotile cell populations. Failure to accountfor all cells within the assay chamber prohibits the determination of percentages of migrated cells. Here we describe an ATP luminescence-based motility-invasion (ALMI) assay that circumvents this problem, enabling investigators to quantify directional cell migration or invasiveness easily. The ALMI assay is based on the detection of ATP in viable cells harvested from inert surfaces that do not generate background signals. We demonstrate how the ALMI assay can be used to assess the effects of various experimental conditions such as growth factor stimulation and ethanol exposure on cell migration. In addition, precoating the membranes with extracellular matrix molecules enabled the measurement of the cell invasion. In conclusion, the ALMI assay provides a reliable and flexible method to quantify cell motility and invasiveness using a luminescence microplate reader.  相似文献   

14.
Yao J  Allen C 《Journal of bacteriology》2006,188(10):3697-3708
Ralstonia solanacearum, a soilborne plant pathogen of considerable economic importance, invades host plant roots from the soil. Qualitative and quantitative chemotaxis assays revealed that this bacterium is specifically attracted to diverse amino acids and organic acids, and especially to root exudates from the host plant tomato. Exudates from rice, a nonhost plant, were less attractive. Eight different strains from this heterogeneous species complex varied significantly in their attraction to a panel of carbohydrate stimuli, raising the possibility that chemotactic responses may be differentially selected traits that confer adaptation to various hosts or ecological conditions. Previous studies found that an aflagellate mutant lacking swimming motility is significantly reduced in virulence, but the role of directed motility mediated by the chemotaxis system was not known. Two site-directed R. solanacearum mutants lacking either CheA or CheW, which are core chemotaxis signal transduction proteins, were completely nonchemotactic but retained normal swimming motility. In biologically realistic soil soak virulence assays on tomato plants, both nonchemotactic mutants had significantly reduced virulence indistinguishable from that of a nonmotile mutant, demonstrating that directed motility, not simply random motion, is required for full virulence. In contrast, nontactic strains were as virulent as the wild-type strain was when bacteria were introduced directly into the plant stem through a cut petiole, indicating that taxis makes its contribution to virulence in the early stages of host invasion and colonization. When inoculated individually by soaking the soil, both nontactic mutants reached the same population sizes as the wild type did in the stems of tomato plants just beginning to wilt. However, when tomato plants were coinoculated with a 1:1 mixture of a nontactic mutant and its wild-type parent, the wild-type strain outcompeted both nontactic mutants by 100-fold. Together, these results indicate that chemotaxis is an important trait for virulence and pathogenic fitness in this plant pathogen.  相似文献   

15.
The obligatory methanotroph, Methylosinus trichosporium OB3b, was studied to optimize the batch culture conditions for the formation of particulate methane monooxygenase (pMMO) in a nitrate minimal salts medium. The important medium components investigated were copper, carbon dioxide, and nitrate. The whole-cell specific pMMO activity decreased sharply with increasing copper concentrations in the range of 10-40 muM and remained constant upon further increases of the copper concentration to 120 muM. The cell growth rate (mu), on the other hand, decreased over the entire range (10-120 muM) of copper concentrations tested. When pMMO was produced in a bioreactor with an optimal initial copper concentration of 10 muM, M. trichosporium OB3b exhibited a much faster overall growth rate and a higher whole-cell propene epoxidation activity compared to our earlier study, in which soluble methane monooxygenase (sMMO) was produced with copper-deficient medium. The addition of external carbon dioxide to the bioreactor culture eliminated an initial lag period in the cell growth. When the standard culture medium nitrate concentration (10 mM) was depleted, the pMMO activity, but not the growth rate, decreased rapidly. The whole-cell specific pMMO activity could be maintained by subsequent supplementation of nitrate. A 4-fold higher initial culture medium nitrate concentration of 40 mM, however, resulted in slower cell growth and lower pMMO activity. These observations demonstrate that, in addition to affecting the exclusive production of pMMO, copper also has an important previously unrecognized role in enhancing the growth rate of M. trichosporium OB3b. They also indicate that for the optimal batch production of pMMO with the minimal medium under study, nitrate should be supplied intermittently during the course of cultivation until other culture medium components become growth-limiting.  相似文献   

16.
Motility is a major trait for competitive tomato root-tip colonization by Pseudomonas fluorescens. To test the hypothesis that this role of motility is based on chemotaxis toward exudate components, cheA mutants that were defective in flagella-driven chemotaxis but retained motility were constructed in four P. fluorescens strains. After inoculation of seedlings with a 1:1 mixture of wild-type and nonmotile mutants all mutants had a strongly reduced competitive root colonizing ability after 7 days of plant growth, both in a gnotobiotic sand system as well as in nonsterile potting soil. The differences were significant on all root parts and increased from root base to root tip. Significant differences at the root tip could already be detected after 2 to 3 days. These experiments show that chemotaxis is an important competitive colonization trait. The best competitive root-tip colonizer, strain WCS365, was tested for chemotaxis toward tomato root exudate and its major identified components. A chemotactic response was detected toward root exudate, some organic acids, and some amino acids from this exudate but not toward its sugars. Comparison of the minimal concentrations required for a chemotactic response with concentrations estimated for exudates suggested that malic acid and citric acid are among major chemo-attractants for P. fluorescens WCS365 cells in the tomato rhizosphere.  相似文献   

17.
Methanobactin (Mb), a 1217-Da copper chelator produced by the methanotroph Methylosinus trichosporium OB3b, is hypothesized to mediate copper acquisition from the environment, particularly from insoluble copper mineral sources. Although indirect evidence suggests that Mb provides copper for the regulation and activity of methane monooxygenase enzymes, experimental data for direct uptake of copper loaded Mb (Cu-Mb) are lacking. Uptake of intact Cu-Mb by M. trichosporium OB3b was demonstrated by isotopic and fluorescent labeling experiments. Confocal microscopy data indicate that Cu-Mb is localized in the cytoplasm. Both Cu-Mb and unchelated Cu are taken up by M. trichosporium OB3b, but by different mechanisms. Uptake of unchelated Cu is inhibited by spermine, suggesting a porin-dependent passive transport process. By contrast, uptake of Cu-Mb is inhibited by the uncoupling agents carbonyl cyanide m-chlorophenylhydrazone and methylamine, but not by spermine, consistent with an active transport process. Cu-Mb from M. trichosporium OB3b can also be internalized by other strains of methanotroph, but not by Escherichia coli, suggesting that Cu-Mb uptake is specific to methanotrophic bacteria. These findings are consistent with a key role for Cu-Mb in copper acquisition by methanotrophs and have important implications for further investigation of the copper uptake machinery.  相似文献   

18.
Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swimming motility by utilizing a small group of flagella localized to a single pole or the subpolar region of the cell. There is no evidence for twitching or swarming motility in A. tumefaciens. Site-specific deletion mutations that resulted in either aflagellate, flagellated but nonmotile, or flagellated but nonchemotactic A. tumefaciens derivatives were examined for biofilm formation under static and flowing conditions. Nonmotile mutants were significantly deficient in biofilm formation under static conditions. Under flowing conditions, however, the aflagellate mutant rapidly formed aberrantly dense, tall biofilms. In contrast, a nonmotile mutant with unpowered flagella was clearly debilitated for biofilm formation relative to the wild type. A nontumbling chemotaxis mutant was only weakly affected with regard to biofilm formation under nonflowing conditions but was notably compromised in flow, generating less adherent biomass than the wild type, with a more dispersed cellular arrangement. Extragenic suppressor mutants of the chemotaxis-impaired, straight-swimming phenotype were readily isolated from motility agar plates. These mutants regained tumbling at a frequency similar to that of the wild type. Despite this phenotype, biofilm formation by the suppressor mutants in static cultures was significantly deficient. Under flowing conditions, a representative suppressor mutant manifested a phenotype similar to yet distinct from that of its nonchemotactic parent.  相似文献   

19.
一株Ⅱ型甲烷氧化菌中甲烷单加氧酶基因和16S rDNA的分析   总被引:1,自引:0,他引:1  
[目的]利用分子生物学方法对-株甲烷氧化菌Methylosinus trichosporium IMV 3011中的16S rDNA和溶解性甲烷单加氧酶基因序列进行分析并探索其进化分类地位.[方法]利用基因数据库已有的基因序列信息,设计PCR扩增引物和基因测序引物,对溶解性甲烷单加氧酶基因和16s rDNA进行扩增和测序,并进行溶解性甲烷单加氧酶的6个基因和氨基酸序列与同类菌株的相应序列进行联配分析.[结果]获得了全长为5319 bp甲烷单加氧酶基因序列和长度为1290 bp的16S rDNA序列.该菌株与Methylosinus trichosporium OB3b中相对应基因的同一性是99.0%~82.7%,MMOX氨基酸序列的同一性为99.4%~81.8%,相似性为99.8%~89.2%.基于以上分析表明MMOX组分有很高的序列保守性,特别是在活性中心区域.[结论]菌株IMV3011属于甲基弯菌属,最近似的菌株是Methylosinus trichosporium OB3b.  相似文献   

20.
Methylosinus trichosporium OB3b (for "oddball" strain 3b) is an obligate aerobic methane-oxidizing alphaproteobacterium that was originally isolated in 1970 by Roger Whittenbury and colleagues. This strain has since been used extensively to elucidate the structure and function of several key enzymes of methane oxidation, including both particulate and soluble methane monooxygenase (sMMO) and the extracellular copper chelator methanobactin. In particular, the catalytic properties of soluble methane monooxygenase from M. trichosporium OB3b have been well characterized in context with biodegradation of recalcitrant hydrocarbons, such as trichloroethylene. The sequence of the M. trichosporium OB3b genome is the first reported from a member of the Methylocystaceae family in the order Rhizobiales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号