首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Myostatin, a negative regulator of skeletal muscle mass, is a proven candidate to modulate skeletal muscle mass through targeted gene knockdown approach. Here, we report myostatin (MSTN) knockdown in goat myoblasts stably expressing small hairpin RNA (shRNAs) against MSTN gene through lentivirus vector-mediated integration. We observed 72% (p?=?0.003) and 54% (p?=?0.022) downregulation of MSTN expression with sh2 shRNA compared to empty vector control and untransduced myoblasts, respectively. The knockdown of MSTN expression was accompanied with concomitant downregulation of myogenic regulatory factor MYOD (77%, p?=?0.001), MYOG (94%, p?=?0.000), and MYF5 (36%, p?=?0.000), cell cycle regulator p21 (62%, p?=?0.000), MSTN receptor ACVR2B (23%, p?=?0.061), MSTN antagonist follistatin (81%, p?=?0.000), and downstream signaling mediators SMAD2 (20%, p?=?0.060) and SMAD3 (49%, p?=?0.006). However, the expression of MYF6 was upregulated by 14% compared to control lentivirus-transduced myoblasts (p?=?0.354) and 79% compared to untransduced myoblasts (p?=?0.018) in sh2 shRNA-transduced goat myoblasts cells. Although, MSTN knockdown led to sustained cell proliferation of myoblasts, the myoblasts fusion was suppressed in both MSTN knocked down and control lentivirus-transduced myoblasts. The expression of interferon response gene OAS1 was significantly upregulated in control lentivirus (10.86-fold; p?=?0.000)- and sh2 (1.71-fold; p?=?0.002)-integrated myoblasts compared to untransduced myoblasts. Our study demonstrates stable knockdown of MSTN in goat myoblasts cells and its potential for use in generation of transgenic goat by somatic cell nuclear transfer.  相似文献   

2.
The critical role of myostatin in differentiation of sheep myoblasts   总被引:2,自引:0,他引:2  
Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.  相似文献   

3.
The Pax3 gene has been proven to play a crucial role in determining myogenic progenitor cell fate during embryonic myogenesis; however, the molecular role of Pax3 in myoblast development during later stages of myogenesis is unknown. We hypothesized that Pax3 would function in myoblast proliferation and differentiation; therefore, we employed three short hairpin RNAs (shRNAs) (shRNA1, shRNA2, and shRNA3) that target Pax3 to characterize the function of Pax3 in duck myoblast development. The mRNA and protein expression levels of Pax3 in duck myoblasts were detected using real-time PCR and Western blotting. Cell proliferation was assessed using the MTT and BrdU assays, while cell differentiation was assayed using immunofluorescence labeling with a MyoG antibody. Additionally, folic acid (FA), which is a rescue tool, was added into the medium of duck myoblasts to indirectly examine the function of Pax3 on duck myoblast proliferation and differentiation. The results revealed that one of the shRNA vectors, shRNA1, could significantly and stably reduce the expression of Pax3 (P < 0.05). Silencing Pax3 by shRNA1 significantly reduced the proliferation and differentiation of duck myoblasts (P < 0.05) due to downregulated expression of myogenic regulator factors. These trends could be rescued by adding FA; and Pax7, a paralog gene of Pax3, was involved in those processes. Overall, Pax3 had a positive function in duck myoblast proliferation and differentiation by modulating the expression of myogenic regulation factors, and shRNA targeting of Pax3 might be a new approach for understanding the function of Pax3 in the development of diverse tissues.  相似文献   

4.
Myostatin (MSTN), a member of transforming growth factor-β (TGF-β) superfamily, is a negative regulator of the skeletal muscle growth, and suppresses the proliferation and differentiation of myoblast cells. Dysfunction of MSTN gene either by natural mutation or genetic manipulation (knockout or knockdown) has been reported to interrupt its proper function and to increase the muscle mass in many mammalian species. RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. In the present study transient silencing of MSTN gene in chicken embryo fibroblast cells was evaluated using five different shRNA expression constructs. We report here up to 68% silencing of myostatin mRNA using these shRNA constructs in transiently transfected fibroblasts (p<0.05). This was, however, associated with induction of interferon responsive genes (OAS1, IFN-β) (3.7-64 folds; p<0.05). Further work on stable expression of antimyostatin shRNA with minimum interferon induction will be of immense value to increase the muscle mass in the transgenic animals.  相似文献   

5.
Abstract

Background: Targeted knockdown of ACVR2B, a receptor for TGF beta superfamily, has been seen as a potential candidate to enhance the muscle mass through RNAi approach. Methods: We have evaluated the potential short hairpin RNAs targeting goat ACVR2B in human HEK293T cells and goat myoblasts cells by transient transfection and measured their knockdown efficiency and possible undesired interferon response by quantitative real-time PCR. Results: We observed a significant silencing (64–81%) of ACVR2B in 293T cells with all seven shRNAs (sh1 to sh7) constructs and 16–46% silencing with maximum of 46% by sh6 (p?=?0.0318) against endogenous ACVR2B whereas up to 66% (p?=?0.0002) silencing by sh6 against exogenously expressed ACVR2B in goat myoblasts cells. Transient knockdown of ACVR2B in goat myoblasts cells by shRNAs did not show significant correlation with the expression of MyoD (r?=?0.547; p?=?0.102), myogenin (r?=?0.517; p?=?0.126) and Myf5 (r?=?0.262; p?=?0.465). As reported earlier, transfection of plasmid DNA induced potent interferon response in 293T and goat myoblasts cells. Conclusions: The present study demonstrates the targeted knockdown of ACVR2B by shRNAs in HEK293T and goat myoblasts cells in vitro. The transient knockdown of ACVR2B by shRNAs in goat myoblasts did not alter the myogenic gene expression program. However, shRNAs showing significant knockdown efficiency in our study may further be tested for long term and stable knockdown to assess their potential to use for enhancing muscle mass in vivo. As reported earlier, expression of shRNAs through plasmid expression vectors induces potent interferon response raising the concern of safety of its application in vivo.  相似文献   

6.
Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.  相似文献   

7.
8.
Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin‐signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector‐based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic‐cell nuclear transfer (SCNT) studies. Sh‐RNA positive cells were screened by puromycin selection. Using real‐time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down‐regulation in sh2 shRNA‐treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin‐targeting siRNA produced endogenously could efficiently down‐regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus‐mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:452–459, 2015  相似文献   

9.
The association between oxidative stress and neutrophilic inflammation in cystic fibrosis (CF) lung disease is well recognized. 8-Isoprostane is a product of non-enzymatic oxidation of arachidonic acid. The aim of the present study was to examine the relationship between lung function decline and 8-isoprostane concentrations in exhaled breath condensate (EBC) in CF patients with Burkholderia cenocepacia airway colonization. Concentrations of 8-isoprostane in EBC were measured in 24 stable CF patients with B. cenocepacia airway colonization. The median (interquartile range) age of the cohort was 23.9 (22.0; 26.6) years. All patients underwent clinical examinations and pulmonary function tests at the time of EBC collection and in 1-, 3-, and 5-year intervals. 8-Isoprostane concentrations in EBC correlated to 1- and 3-year declines of forced expiratory volume in 1 s (FEV1) with r S values of ?0.511 (p?=?0.0011) and ?0.495 (p?=?0.016), respectively. In multiple regression analysis, 8-isoprostane concentrations in EBC were the only independent predictor for 1-year FEV1 decline (p?=?0.01). When the median value of 8-isoprostane concentration in EBC (10.0 pg/mL) was used as a cutoff, subgroups of patients with lower and higher level of oxidative stress had significantly different median (interquartile range) FEV1 declines in 1-year interval, ?2.4 % (?5.3; 0.8) and ?7.3 % (?10.3; ?5.8) predicted (p?=?0.009). In conclusion, 8-isoprostane concentrations in EBC correlated to short-term lung function decline in CF patients with B. cenocepacia airway colonization. This correlation reflects the role of oxidative stress in CF lung pathogenesis and contributes to prediction of prognosis in these patients.  相似文献   

10.
Some causal bases of stroke remain unclear, but the nutritional effects on the epigenetic regulation of different genes may be involved. The aim was to assess the impact of epigenetic processes of human tumor necrosis factor (TNF-α) and paraoxonase (PON) promoters in the susceptibility to stroke when considering body composition and dietary intake. Twenty-four patients (12 non-stroke/12 stroke) were matched by sex (12 male/12 female), age (mean 70?±?12 years old), and BMI (12 normal-weight/12 obese; mean 28.1?±?6.7 kg/m2). Blood cell DNA was isolated and DNA methylation levels of TNF-α (?186 to +349 bp) and PON (?231 to +250 bp) promoters were analyzed by the Sequenom EpiTYPER approach. Histone modifications (H3K9ac and H3K4me3) were analyzed also by chromatin immunoprecipitation in a region of TNF-α (?297 to ?185). Total TNF-α promoter methylation was lower in stroke patients (p?<?0.001) and showed no interaction with body composition (p?=?0.807). TNF-α and PON total methylation levels correlated each other (r?=?0.44; p?=?0.031), especially in stroke patients (r?=?0.72; p?=?0.008). The +309 CpG methylation site from TNF-α promoter was related to body weight (p?=?0.027) and the region containing three CpGs (from ?170 to ?162 bp) to the percentage of lipid intake and dietary indexes (p?<?0.05) in non-stroke patients. The methylation of PON +15 and +241 CpGs was related to body weight (p?=?0.021), waist circumference (p?=?0.020), and energy intake (p?=?0.018), whereas +214 was associated to the quality of the diet (p?<?0.05) in non-stroke patients. When comparing stroke vs non-stroke patients regarding the histone modifications analyzed at TNF-α promoter, no changes were found, although a significant association was identified between circulating TNF-α level and H3K9ac with H3K4me3. TNF-α and PON promoter methylation levels could be involved in the susceptibility to stroke and obesity outcome, respectively. The dietary intake and body composition may influence this epigenetic regulation in non-stroke patients.  相似文献   

11.
Senescence marker protein 30 (SMP30) is a calcium-binding protein whose expression decreases during senescence. SMP30 deficiency increases susceptibility to cytokine-induced apoptosis in the liver and to radiation-induced apoptosis in the small intestine. Furthermore, colonic epithelial cell death is associated with the severity of colitis. Therefore, in the present study, we investigated the function of SMP30 during intestinal inflammation. In SMP30 deficient mice, colitis was significantly exacerbated as demonstrated by increased mortality (p?=?0.001), body weight loss (p?=?0.0105 at day 8), rectal bleeding (p?=?0.0047 at day 8) and diarrhea (p?=?0.0030 at day 8), histological scores (ulcers, p?=?0.0002; edema, p?=?0.0125; leukocyte infiltration, p?=?0.0016) and productions of pro-inflammatory cytokines (IL-1α, p?=?0.0452; IL-6, p?=?0.0074; G-CSF, p?=?0.0036). In addition, greater proportions of apoptotic cells and lower levels of anti-apoptotic marker proteins (total PARP-1 and Bcl-2) were observed in the inflamed intestines of SMP30 deficient mice than in wild type controls. In vitro experiments on colonic epithelial cells showed that stable SMP30 expression inhibited but that SMP30 siRNA expression increased TNF-α-induced apoptosis. SMP30 inhibition decreased Nrf2 mRNA expression levels (p?<?0.0001), but SMP30 overexpression increased Nrf2 mRNA expression levels (p?=?0.0495). The underlying mechanism by which SMP30 protected cells appeared to be by inhibiting Nrf2 ubiquitination and Keap1 expression, and thus enhancing Nrf2 activity. Moreover, SMP30 deficiency increased the incidence of colitis-associated colon cancer as determined by increased mortality (p?=?0.0572) and average polyp number (p?=?0.0277). Collectively, these findings suggest that SMP30 protects intestinal epithelial cells from apoptosis and this can contribute to amelioration of colitis and colitis-associated colon cancer.  相似文献   

12.
This study investigates both the level of toxic metals in children with autism and the possible association of those toxic metals with autism severity. This study involved 55 children with autism ages 5–16 years compared to 44 controls with similar age and gender. The study included measurements of toxic metals in whole blood, red blood cells (RBC), and urine. The autism group had higher levels of lead in RBC (+41 %, p?=?0.002) and higher urinary levels of lead (+74 %, p?=?0.02), thallium (+77 %, p?=?0.0001), tin (+115 %, p?=?0.01), and tungsten (+44 %, p?=?0.00005). However, the autism group had slightly lower levels of cadmium in whole blood (?19 %, p?=?0.003). A stepwise, multiple linear regression analysis found a strong association of levels of toxic metals with variation in the degree of severity of autism for all the severity scales (adjusted R 2 of 0.38–0.47, p?<?0.0003). Cadmium (whole blood) and mercury (whole blood and RBC) were the most consistently significant variables. Overall, children with autism have higher average levels of several toxic metals, and levels of several toxic metals are strongly associated with variations in the severity of autism for all three of the autism severity scales investigated.  相似文献   

13.
14.
RNA-interference-driven loss of function in specific tissues in vivo should permit analysis of gene function in temporally and spatially defined contexts. However, delivery of efficient short hairpin RNA (shRNA) to target tissues in vivo remains problematic. Here, we demonstrate that efficiency of polyethylenimine (PEI)-delivered shRNA depends on the regulatory sequences used, both in vivo and in vitro. When tested in vivo, silencing of a luciferase target gene by shRNA produced from a hybrid construct composed of the CMV enhancer/promoter placed immediately upstream of an H1 promoter (50%) exceeds that obtained with the H1 promoter alone (20%). In contrast, in NIH 3T3 cells, the H1 promoter was more efficient than the hybrid construct (75 versus 60% inhibition of target gene expression, respectively). To test CMV-H1 shRNA efficiency against an endogenous gene in vivo, we used shRNA against thyroid hormone receptor α1 (TRα1). When vectorized in the mouse brain, the hybrid construct strongly derepressed CyclinD1-luciferase reporter gene expression, CyclinD1 being a negatively regulated thyroid hormone target gene. We conclude that promoter choice affects shRNA efficiency distinctly in different in vitro and in vivo situations and that a hybrid CMV-H1 construct is optimal for shRNA delivery in the mouse brain.  相似文献   

15.
16.
17.
18.
目的构建能沉默MSTN基因的小干扰RNA表达载体,并鉴定它沉默肌母细胞MSTN基因的效率。方法合成3对发夹小干扰RNA模板寡核苷酸链,退火后插入pSileneer载体.构建成可沉默MSTN基因的小干扰RNA表达载体,通过酶切和测序鉴定构建的小干扰RNA表达载体。将小干扰RNA表达载体转染肌母细胞,用实时荧光定量RT—PCR和Western印迹检测转染的肌母细胞myostatin的表达水平。结果酶切和测序证实3个小干扰RNA表达载体构建正确,实时荧光定量RT—PCR显示所构建的3个小干扰RNA表达载体对肌母细胞MSTN基因的干扰率分别为43.6%、47.7%和81.6%,它们的干扰效果被Western印迹所证实。结论干扰率为81.6%的小干扰RNA表达载体为构建成功的小干扰RNA表达载体,。岜可用作MSTN基因的功能研究和肌病治疗的分子研究。  相似文献   

19.
We hypothesized that preadipocyte differentiation would be depressed by differentiating myoblasts, whereas preadipocytes would promote adipogenic gene expression in myoblasts in a co-culture system. We also determined the effects of arginine, a biological precursor of nitric oxide, and/or trans-10, cis-12 conjugated linoleic acid (CLA) on adipogenic gene expression during differentiation of bovine preadipocytes and myoblasts. Bovine semimembranosus satellite cells (BSC) and subcutaneous preadipocytes were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's modified Eagle medium (DMEM) and 1% antibiotics during the 3-day proliferation period. After proliferation, BSC and preadipocytes were treated for 3 days with 3% horse serum/DMEM and 5% FBS/DMEM with antibiotics, respectively. Media also contained 100 μM oleic acid, 10 μg/ml insulin, 1 μg/ml pioglitazone and 1 μg/ml dexamethasone. Subsequently, the differentiating myoblasts and adipocytes were cultured in their respective media with 5 mM arginine and/or 40 μM trans-10, cis-12 CLA for 4 days. Finally, myoblasts and adipocytes were single- or co-cultured for 2 h singly or in combination. Arginine stimulated SCD gene expression, whereas CLA depressed SCD gene expression in adipocytes and myoblasts (P=.002). Co-culture of adipocytes and myoblasts elicited an increase in C/EBPβ and PPARγ gene expression in differentiated myoblasts (P≤.01) and an increase in GPR43 gene expression in adipocytes (P=.01). Expression of AMPKα and CPT1ß was unaffected by co-culture, although SCD gene expression tended (P=.12) to be depressed by co-culture. These experiments demonstrated that co-culture of adipocytes with myoblasts increased adipogenic gene expression in the myoblastic cells.  相似文献   

20.

Background

Selenoprotein W (SelW) was thought to play an antioxidant role in mammals. Because chicken SelW has no cysteine (Cys) at the residue 37 (Cys37) that is required for the presumed antioxidant function in mammals, this study was conducted to determine whether chicken SelW possessed the same function.

Methods

Small interfering RNAs (siRNAs) technology was applied to suppress the SelW expression in chicken embryonic myoblasts. Thereafter, these myoblasts were treated with different concentrations of H2O2 and assayed for cell viability, apoptosis rate, reactive oxygen species (ROS) status, and expression levels of apoptosis-related genes and proteins (Bax, Bcl-2, and caspase-3).

Results

Silencing of the myoblast SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. While the knockout down of SelW up-regulated Bax and caspase-3 and down-regulated Bcl-2, the induced oxidative injuries were alleviated by treatment with a ROS scavenger, N-acetyl-l-cysteine (NAC).

Conclusion

Chicken SelW protected embryonic myoblasts against cell apoptosis mediated by endogenous and exogenous H2O2.

General significance

Chicken SelW possesses antioxidant function similar to the mammalian homologues despite the lack of Cys37 in the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号