首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An isocratic HPLC method was developed and validated for the quantitation of methocarbamol in human plasma. Methocarbamol and internal standard in 200 μl of human plasma were extracted with ethyl acetate, evaporated to dryness and reconstituted in water. Separation was achieved on a reversed-phase C18 column with a mobile phase of methanol—0.1 M potassium phosphate monobasic—water (35:10:55, v/v/v). The detection was by ultraviolet at 272 nm. Linearity was established at 1–100 μg/ml (r > 0.999). The limit of quantitation was designed as 1 μg/ml to suit pharmacokinetic studies. Inter-day precision and accuracy of the calibration standards were 1.0 to 3.6% coefficients of variance (C.V.) and −2.0 to +1.6% relative error (R.E.). Quality controls of 3, 20 and 70 μg/ml showed inter-day precision and accuracy of 2.5 to 3.6% C.V. and −0.9 to −0.4% R.E. Recovery of methocarbamol was 91.4–100.3% in five different lots of plasma. The method was shown to be applicable on different brands of C18 columns.  相似文献   

2.
A rapid clean-up procedure based on ion-pair solid-phase extraction (SPE) for the high-performance liquid chromatographic (HPLC) determination of spectinomycin in swine, calf and chicken plasma at a limit of detection of 50 ng/ml is described. After dilution with water and adjustment of the pH to approximately 5.6, the plasma is applied to a high-hydrophobic C18 SPE column treated with sodium dioctylsulphosuccinate. Spectinomycin is eluted with methanol and derivatized with 2-naphthalene sulphonyl chloride prior to chromatography. The HPLC set-up consists of a dual-column system using two Chromspher silica columns and dichloromethane—acetonitrile—ethyl acetate—acetic acid, in different ratios, as mobile phases. Detection is performed at 250 nm. Quantification is carried out using external standards prepared in blank cleaned plasma. Mean recoveries were 83 ± 3% (n = 5), 93 ± 6% (n = 5) and 92 ± 6% (n = 6) for swine, calf and chicken plasma, respectively, at the 0.1 μg/ml level.  相似文献   

3.
A reliable high-performance liquid chromatographic method has been validated for determination of gallamine in rat plasma, muscle tissue and microdialysate samples. A C18 reversed-phase column with mobile phase of methanol and water containing 12.5 mM tetrabutyl ammonium (TBA) hydrogen sulphate (22:78, v/v) was used. The flow-rate was 1 ml/min with UV detection at 229 nm. Sample preparation involved protein precipitation with acetonitrile for plasma and muscle tissue homogenate samples. Microdialysate samples were injected into the HPLC system without any sample preparation. Intra-day and inter-day accuracy and precision of the assay were <13%. The limit of quantification was 1 μg/ml for plasma, 1.6 μg/g for muscle tissue and 0.5 μg/ml for microdialysate samples. The assay was applied successfully to analysis of samples obtained from a pharmacokinetic study in rats using the microdialysis technique.  相似文献   

4.
A method for the routine clinical examination of serum gliclazide by high-performance liquid chromatography (HPLC) on a column packed with a macroporous anion-exchange resin, Diaion CDR-10, was developed. The elution was performed with acetonitrile—methyl alcohol—1.2 M ammonium perchlorate (4:3:7, v/v/v) at a flow-rate of 0.4 ml/min. The retention time of gliclazide was 15 min. It seems that the retention mechanism of gliclazide under the HPLC conditions described is not only ion-exchange mode but reversed-phase mode between the anion-exchange resin and the mobile phase. The detection limit of gliclazide was 0.2 μg/ml in plasma. The coefficient of variation for the within-day assay was 5.0% (0.2 μg/ml, n=8). The decay curve of serum gliclazide in diabetic patients was determined.  相似文献   

5.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

6.
A simple procedure for the simultaneous determination of modafinil, its acid and sulfone metabolites in plasma is described. The assay involved an extraction of the drug, metabolites and internal standard from plasma with a solid-phase extraction using C18 cartridges. These compounds were eluted by methanol. The extract was evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was redissolved in 250 μl of mobile-phase and a 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile-phase (26%, v/v acetonitrile in 0.05 M orthophosphoric acid buffer adjusted to pH 2.6) at a flow-rate of 1.1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 225 nm. Intra-day coefficients of variation ranged from 1.0 to 2.9% and inter-day coefficients from 0.9 to 6.1%. The limits of detection and quantitation of the assay were 0.01 μg/ml and 0.10 μg/ml respectively.  相似文献   

7.
Indomethacin and mefenamic acid are widely used clinically as non-steroidal anti-inflammatory agents. Both drugs have also been found effective to produce closure of patent ductus arteriosus in premature neonates. A simple, rapid, sensitive and reliable HPLC method is described for the determination of indomethacin and mefenamic acid in human plasma. As these drugs are not applied together, the compounds are alternately used as analyte and internal standard. Plasma was deproteinized with acetonitrile, the supernatant fraction was evaporated to dryness and the resulting residue was reconstituted in the mobile phase and injected into the HPLC system. The chromatographic separation was performed on a C18 column (250 × 4.6 mm I.D.) using 10 mM phosphoric acid—acetonitrile (40:60, v/v) as the mobile phase and both drugs were detected at 280 nm. The calibration graphs were linear with a correlation coefficient (r) of 0.999 or better from 0.1 to 10 μg/ml and the detection limits were 0.06 μg/ml for indomethacin and 0.08 μg/ml for mefenamic acid, for 50μl plasma samples. The method was not interfered with by other plasma components and has been found particularly useful for paediatric use. The within-day precision and accuracy of the method were evaluated for three concentrations in spiked plasma samples. The coefficients of variation were less than 5% and the accuracy was nearly 100% for both drugs.  相似文献   

8.
We extended the application of a sensitive high-performance liquid chromatography assay of amoxicillin developed in this laboratory for human plasma and middle ear fluid (MEF) to other sample matrices including chinchilla plasma or MEF and human and chinchilla whole blood with minor modification and validated the limit of quantitation at 0.25 μg/ml with a 50-μl sample size for human and chinchilla plasmas or MEFs. Amoxicillin and cefadroxil, the internal standard, were extracted from 50 μl of the samples with Bond Elut C18 cartridges. The extract was analyzed on a Keystone MOS Hypersil-1 (C8) column with UV detection at 210 nm. The mobile phase was 6% acetonitrile in 5 mM phosphate buffer, pH 6.5 and 5 mM tetrabutylammonium. The within-day coefficients of variation were 2.7–9.9 (n=4) and 1.7–7.2% (n=3) for chinchilla plasma and MEF samples, respectively; 2.8–8.1% (n=3) and 2.9–4.7% (n=3) for human and chinchilla whole blood, respectively. An alternative mobile phase composition for chinchilla plasma and MEF samples reduced the analysis time significantly.  相似文献   

9.
A rapid and sensitive method for extracting temazepam from human serum and urine is presented. Free temazepam is extracted from plasma and urine samples using n-butyl chloride with nitrazepam as the internal standard. Temazepam glucuronide is analyzed as free temazepam after incubating extracts with β-glucuronidase. Separation is achieved using a C8 reversed-phase column with a methanol—water—phosphate buffer mobile phase. An ultraviolet detector operated at 230 nm is used and a linear response is observed from 20 ng/ml to 10 μg/ml. The limit of detection is 15.5 ng/ml and the limit of quantitation is 46.5 ng/ml. Coefficients of variation are less than 10% for concentrations greater than 50 ng/ml. Application of the methodology is demonstrated in a pharmacokinetic study using eight healthy male subjects.  相似文献   

10.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

11.
Achiral and chiral HPLC methods were developed for clinafloxacin, a quinolone antimicrobial agent. For achiral assay, analytes were isolated from plasma by precipitating plasma proteins. Separation was achieved on a C18 column using an isocratic eluent of ion pairing solution–acetonitrile (80:20, v/v) at 1.0 ml/min with UV detection at 340 nm. The ion pairing solution was 0.05 M citric acid, 1.15 mM tetrabutylammonium hydroxide and 0.1% ammonium perchlorate. Inter-assay accuracy was within 4.9% with an inter-assay precision of 3.7% over a quantitation range of 0.025 to 10.0 μg/ml. For chiral assay, analytes were isolated from plasma by solid-phase extraction. Separation was achieved on a Crownpak CR(+) column using an isocratic eluent of water–methanol (88:12, v/v) containing 0.1 mM decylamine at 1.0 ml/min with UV detection at 340 nm. Perchloric acid was added to adjust pH to 2. Inter-assay accuracy was within 3.5% with a inter-assay precision of 5.4% over a quantitation range of 0.040 to 2.5 μg/ml.  相似文献   

12.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

13.
Two high-performance liquid chromatographic procedures were proposed to measure histamine. The first, with UV detection and a strong acid cation exchanger (Partisil 10, SCX Whatman), made it possible to isolate histamine and some methylated derivatives. The second, with a C18 sorbent (μBondapak, Waters, 10 μm particle size) eluted with ion-pairing phases, made it possible to isolate the histamine—o-phthaldialdehyde complexes. This last procedure allied with a chromatographic purification step gave lower or identical amounts of histamine than those described in human urine (16 ± 7 μg per 24 h), canine whole blood (1.5 ± 1 ng/ml) and human gastric juice (2.3 ± 1.4 ng/ml). The two procedures gave the concentration of a histamine-like compound isolated from the antral mucosa.  相似文献   

14.
Synthetic vitamin K3 (VK3, 2-methyl-1,4-naphthoquinone, or menadione) has been found to exhibit antitumor activity against various human cancer cells at relative high dose. Parallel to our study on the mechanism of VK3 action and for future clinical trials in Taiwan, we developed a simple, sensitive and accurate high-performance liquid chromatographic method for the determination of VK3 in biological fluids. VK3 was extracted from the plasma samples with n-hexane. The chromatographic separation employed an ODS analytical column (5 μm, 250 × 4.6 mm I.D.) with a mobile phase of methanol-water (70:30 v/v) and UV detection at 265 nm. On completely drying of the extraction solution, n-hexane, by a stream of nitrogen, menadione was lost to a great extent. Methanol (70%, 200 μl) was added to the extraction solvent after extraction and centrifugation to prevent the loss of menadione. The absolute recovery was 82.4±7.69% (n = 7). The within-day and between-day calibration curves of VK3 in plasma in the ranges of interest (0.01–10.00 μg/ml; 0.01–5.00 μg/ml) showed good linearity (r>0.999) and acceptable precision. The limit of quantitation of VK3 was 10 ng/ml) showed good method has been succesfully applied to a pilot pharmacokinetic study of VK3 in rabbits receiving an intravenous high-dose bolus injection of 75 mg menadiol sodium diphosphate (Synkayvite). The pharmacokinetic properties of menadione could be described adequately by an open two-compartment model. The mean half-life of menadiol (transformation to menadione) was 2.60±0.12 min. The elimination half-life, volume of distribution and plasma clearance of menadione were 26.3±2.97 min, 25.7±0.78 1, and 0.68±0.10 1/min, respectively.  相似文献   

15.
A reversed-phase high-performance liquid chromatographic method for oxazepam in human urine samples has been developed. The sample preparation consists of an enzymatic hydrolysis with β-glucuronidase, followed by a solid-phase extraction process using Bond-Elut C2 cartridges. The mobile phase used was a methanol—water (60:40, v/v) mixture at a flow-rate of 0.50 ml/min. The column was a 3.5 cm × 4.6 mm I.D. C18 reversed-phase column. The detection system was based on a fluorescence post-column derivatization of oxazepam in mixtures of methanol and acetic acid. A linear range from 0.01 to 1 μg/ml of urine and a limit of detection of 4 ng/ml of urine were attained. Within-day recoveries and reproducibilities from urine samples spiked with 0.2 and 0.02 μg/ml oxazepam were 97.9 and 95.0 and 2.1 and 9.4%, respectively.  相似文献   

16.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

17.
This paper describes a high-performance liquid chromatographic method with ultraviolet absorbance detection at 304 nm for the determination of 6-chloro-5-(1-naphthyloxy)-2-methylthio benzimidazole (αBIOF10) — a new fasciolicide agent — and its sulphoxide (SOαBIOF10), in plasma and urine. It requires 2 ml of biological fluid, an extraction using Sep-Pak cartridges, and methanol for drug elution. Analysis is performed on a μBondapak C18 (10 μm) column, using methanol–acetonitrile–water (40:30:30, v/v) as the mobile phase. Results showed that the assay is sensitive: 12 ng/ml for αBIOF10 and SOαBIOF10 in plasma and 3.6 ng/ml for both compounds in urine. The response was linear between 0.195 and 12.5 μg/ml. Maximum intra-day coefficient of variation was 5.3%. Recovery obtained was 97.8% for both αBIOF10 and SOαBIOF10. In urine, recovery was 99.6% and 93.1% for αBIOF10 and SOαBIOF10 respectively. The method was used to perform a preliminary pharmacokinetic study in two sheep and was found to be satisfactory.  相似文献   

18.
A 0.5-ml aliquot of a serum sample, after the addition of a 100-μl aliquot of a 5 μg/ml solution of dibucaine as the internal standard, is vortex-mixed with 0.5 ml of acetonitrile and centrifuged. The supernatant is applied to a 1-ml BondElut C18 silica extraction column conditioned with subsequent washings with 1 M HCl, methanol and water. After passing the sample at a slow rate, the column is washed twice with water and once with acetonitrile. The desired compounds are then eluted with a 0.25-ml aliquot of 35% perchloric acid—methanol (1:40, v/v). A 7-μl aliquot of the eluate is injected onto a 150 × 4.6 mm I.D. column packed with 5-μm C8 silica particles and eluted at ambient temperature with a mobile phase of 10 mM phosphate buffer-acetonitrile (2:1, v/v) (pH 3.2). The peaks are detected with a fluorescence detector (excitation at 295 nm, emission at 365 nm). The resulting chromatogram is clean with no extraneous peaks. Paroxetine and dibucaine give sharp peaks which are well separated from each other and from the solvent peaks. The extraction recovery of the drug and the internal standard is in the range of 90% which allows a highly sensitive determination of paroxetine.  相似文献   

19.
A high-performance liquid chromatographic method for the determination of the histamine H1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)—methanol—tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10 μg/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is <6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10 μg/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay.  相似文献   

20.
A simultaneous assay for droperidol and flunitrazepam by high-performance liquid chromatography has been developed and applied to blood samples collected during an acute normovolemic haemodilution under general anaesthesia. Haemodilution blood samples were stored at +4°C to be transfused, if required, to a patient during the post-surgical phase. A C18 Supelclean cartridge was used for solid-phase extraction, and the recoveries were 74% and 89%, respectively, for droperidol and flunitrazepam. Compounds were chromatographed on a C18 Novapak column at 250 nm, with a mobile phase of acetonitrile—10 mM ammonium acetate buffer (pH 6.7) (45:55, v/v). Nitrazepam was used as the internal standard. For both drugs, the assay was linear up to 500 μg/l, and the detection limits were 20 and 10 μg/l for droperidol and flunitrazepam, respectively, and their observed levels in haemodilution samples were 93 ± 82 μg/l and 76 ± 107 μg/l, respectively. Some of the values for flunitrazepam were higher than the minimal efficient concentration, defined as the plasma level observed at the time of the patient wakening from anaesthesia (12 ± 4 μg/l). According to our results, haemodilution sampling can be performed before induction of anaesthesia. When the blood is collected after the anaesthetic induction, it seems necessary to determine levels of the two drugs in haemodilution samples to avoid side-effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号