首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze-dried mouse spermatozoa are capable of participating in normal embryonic development after injection into oocytes. When the freeze-dried spermatozoa are used as a method for storage of genetic materials, however, it is essential to assure the relevance of long-term preservation over several decades or centuries. Thus, we applied the theory of accelerated degradation kinetics to freeze-dried mouse spermatozoa. Thermal denaturation kinetics were determined based on Arrhenius plots derived from transition-state theory analysis at three elevated temperatures: 30, 40, and 50 degrees C. Accelerated degradation kinetics were calculated by extrapolation of Arrhenius plots. This theory also is being applied to the long-term stability of drugs. The estimated rate of development to the blastocyst stage at 3 and 6 mo and at 1, 10, and 100 yr of sperm storage at 4 degrees C were 21.60%, 7.91%, 1.00%, 0%, and 0%, respectively. At -80 degrees C, estimated development rates to the blastocyst stage that would be expected after 100 yr of storage did not decline significantly. In addition, after 3 or 6 mo of storage at 4 or -80 degrees C, preimplantation development of the embryos derived from intracytoplasmic sperm injection (ICSI) was examined. The actual developmental rates to the blastocyst stage from ICSI by freeze-dried sperm stored for 3 mo at 4 and -80 degrees C were 21% and 62%, respectively, and the rates for such sperm stored for 6 mo were 13% and 59%, respectively. These results indicate that the determination of accelerated degradation kinetics can be applied to the preservation of freeze-dried mouse spermatozoa. Furthermore, for long-term preservation, freeze-dried mouse spermatozoa appear to require being kept at lower than -80 degrees C.  相似文献   

2.
The widespread production of mice with transgenes, disrupted genes and mutant genes, has strained the resources available for maintaining these mouse lines as live populations, and dependable methods for gamete and embryo preservation in these lines are needed. Here we report the results of intracytoplasmic sperm injection (ICSI) with spermatozoa freeze-dried or frozen without a cryoprotectant after storage for periods up to 1.5 years. Freeze-dried samples were stored at 4 degrees C. Samples frozen without cryoprotection were maintained at -196 degrees C. After storage, spermatozoa were injected into the oocytes by ICSI. Zygotic chromosomes and fetal development at Day 15 of gestation were examined after 0, 1, 3, 6, 9, and 12 mo of sperm storage. When fresh spermatozoa were used for ICSI, 96% of resultant zygotes contained normal chromosomes, and 58% of two-cell embryos transferred developed to normal viable fetuses. Similar results were obtained when spermatozoa were frozen without cryoprotection and then used for ICSI (87% and 45%, respectively; P > 0.05) and after 12 mo of sperm storage (mean of six endpoints examined: 87% and 52%, respectively; P > 0.05). Freeze-drying decreased the proportion of zygotes with normal karyoplates (75% vs. 96%; P < 0.001) and the proportion of embryos that developed into fetuses (35% vs. 58%; P < 0.001), but similar to freezing, there was no further deterioration during 12 mo of storage (mean of six endpoints examined: 68% and 34%, respectively; P > 0.05). Live offspring were obtained from both freeze-dried and frozen spermatozoa after storage for 1.5 yr. The results indicate that 1) the freeze-drying procedure itself causes some abnormalities in spermatozoa but freezing without cryoprotection does not and 2) long-term storage of both frozen and freeze-dried spermatozoa is not deleterious to their genetic integrity. Freezing without cryoprotection is highly successful, simple, and efficient but, like all routine sperm storage methods, requires liquid nitrogen. Liquid nitrogen is also required for freeze-drying, but sperm can then be stored at 4 degrees C and shipped at ambient temperatures. Both preservation methods are successful, but rapid freezing without cryoprotection is the preferred method for preservation of spermatozoa from mouse strains carrying unique genes and mutations.  相似文献   

3.
Kaneko T  Nakagata N 《Cryobiology》2006,53(2):279-282
This study demonstrates that a small amount of chelating agent in the freeze-drying solution is necessary to prevent the deterioration of spermatozoa during freeze-drying and subsequent preservation at 4 degrees C. We freeze-dried mouse epididymal spermatozoa in the solutions containing Tris-HCl and ethylenediaminetetraacetic acid (EDTA) as a chelating agent. Spermatozoa stored for various times up to 1 year at 4 degrees C were injected intracytoplasmically into individual oocytes, and the normality of chromosomes in fertilized oocytes was analyzed. In addition, embryos derived from freeze-dried spermatozoa were transferred into recipients to determine their developmental ability. Chromosomes were maintained well when spermatozoa were freeze-dried in a solution containing 10 mM Tris-HCl and 1mM EDTA (73%), and 57% of embryos developed to term. Of embryos derived from spermatozoa stored for 1 year, 65% developed into live offspring. On the other hand, when spermatozoa were freeze-dried in a solution containing 10 mM Tris-HCl and 0 or 50 mM EDTA, spermatozoa that maintained karyotypically normal chromosomes were 64% or 22%, and only 16% or 3% of embryos were developed to term, respectively. This finding suggested that mouse spermatozoa can be freeze-dried in a simple solution containing the same composition as that used to preserve extracted DNA.  相似文献   

4.
The advantage of freeze-dried mouse spermatozoa is that samples can be stored in the refrigerator (+4 degrees C). Moreover, the storage of freeze-dried spermatozoa at ambient temperature would permit spermatozoa to be shipped easily and at low cost around the world. To examine the influence of the storage temperature on freeze-dried spermatozoa, we assessed the fertilizing ability of spermatozoa stored at different temperatures. Cauda epididymal spermatozoa were freeze-dried in buffer consisting of 50 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, 50 mM NaCl, and 10 mM Tris-HCl (pH 8.0). Samples of freeze-dried spermatozoa were stored at -70, -20, +4, or +24 degrees C for periods of 1 week and 1, 3, and 5 months. Sperm chromosomes were maintained well at -70, -20, and + 4 degrees C for 5 months, and oocytes fertilized with these spermatozoa developed to normal offspring. Moreover, the chromosomal integrity of spermatozoa stored at -20 or + 4 degrees C did not decrease even after 17 months. In contrast, the chromosomes of spermatozoa stored at +24 degrees C were maintained well for 1 month but became considerably degraded after 3 months. In addition, to investigate the cause of deterioration of sperm chromosomes during storage at +24 degrees C, spermatozoa were freeze-dried in buffer containing DNase I. The chromosomes of spermatozoa freeze-dried with 1 or 0.2 units/ml of DNase I, 100% or 72%, respectively, exhibited chromosomal abnormalities. Our findings suggest that freeze-dried spermatozoa can be stored long-term with stability at +4 degrees C, and the suppression of nucleases present in the buffer or spermatozoa during storage led to the achievement of long-term storage of freeze-dried spermatozoa.  相似文献   

5.
Liu J  Lee GY  Lawitts JA  Toner M  Biggers JD 《PloS one》2012,7(1):e29924
With the fast advancement in the genetics and bio-medical fields, the vast number of valuable transgenic and rare genetic mouse models need to be preserved. Preservation of mouse sperm by convective drying and subsequent storing at above freezing temperatures could dramatically reduce the cost and facilitate shipping. Mouse sperm were convectively dried under nitrogen gas in the Na-EGTA solution containing 100 mmol/L 3-O-methyl-D-glucose and stored in LiCl sorption jars (Relative Humidity, RH, 12%) at 4°C and 22°C for up to one year. The functionality of these sperm samples after storage was tested by intracytoplasmic injection into mouse oocytes. The percentages of blastocysts produced from sperm stored at 4°C for 1, 2, 3, 6, and 12 months were 62.6%, 53.4%, 39.6%, 33.3%, and 30.4%, respectively, while those stored at 22°C for 1, 2, and 3 months were 28.8%, 26.6%, and 12.2%, respectively. Transfer of 38 two- to four-cell embryos from sperm stored at 4°C for 1 year produced two live pups while 59 two- to four-cell embryos from sperm stored at 22°C for 3 months also produced two live pups. Although all the pups looked healthy at 3 weeks of age, normality of offspring produced using convectively dried sperm needs further investigation. The percentages of blastocyst from sperm stored in the higher relative humidity conditions of NaBr and MgCl(2) jars and driest condition of P(2)O(5) jars at 4°C and 22°C were all lower. A simple method of mouse sperm preservation is demonstrated. Three-O-methyl-D-glucose, a metabolically inactive derivative of glucose, offers significant protection for dried mouse sperm at above freezing temperatures without the need for poration of cell membrane.  相似文献   

6.
Sperm preservation is a useful technique for the maintenance of biological resources in experimental and domestic animals, and in wild animals. A new preservation method has been developed that enables sperm to be stored for a long time in a refrigerator at 4°C. Sperm are freeze-dried in a solution containing 10 mM Tris and 1 mM EDTA. Using this method, liquid nitrogen is not required for the storage and transportation of sperm. We demonstrate that chimpanzee, giraffe, jaguar, weasel and the long-haired rat sperm remain viable after freeze-drying. In all species, pronuclei were formed after the injection of freeze-dried sperm into the mouse oocytes. Although preliminary, these results may be useful for the future establishment of “freeze-drying zoo” to conserve wild animals.  相似文献   

7.
Kaneko T  Serikawa T 《PloS one》2012,7(4):e35043

Background

Freeze-drying sperm has been developed as a new preservation method where liquid nitrogen is no longer necessary. An advantage of freeze-drying sperm is that it can be stored at 4°C and transported at room temperature. Although the successful freeze-drying of sperm has been reported in a number of animals, the possibility of long-term preservation using this method has not yet been studied.

Methodology/Principal Findings

Offspring were obtained from oocytes fertilized with rat epididymal sperm freeze-dried using a solution containing 10 mM Tris and 1 mM EDTA adjusted to pH 8.0. Tolerance of testicular sperm to freeze-drying was increased by pre-treatment with diamide. Offspring with normal fertility were obtained from oocytes fertilized with freeze-dried epididymal sperm stored at 4°C for 5 years.

Conclusions and Significance

Sperm with –SS– cross-linking in the thiol-disulfide of their protamine were highly tolerant to freeze-drying, and the fertility of freeze-dried sperm was maintained for 5 years without deterioration. This is the first report to demonstrate the successful freeze-drying of sperm using a new and simple method for long-term preservation.  相似文献   

8.
Cryopreservation of spermatozoa is a strategy that has been used to conserve the sperm of animal species and animal strains that are valuable for biomedical research. A simple method for preserving spermatozoa after application of intracytoplasmic sperm injection (ICSI) is much needed. It has been shown previously that spermatozoa frozen at 20°C can activate oocytes and support full-term embryo development. However, epigenetic reprogramming could be affected by the environment and by the in vitro manipulation of gametes. Here, we investigated embryo epigenetic reprogramming including DNA methylation and histone modification, in embryos derived from sperm preserved at 20°C without cryoprotectants. The results showed that although both fertilization and embryo developmental competence were decreased, the dynamic epigenetic reprogramming of embryos derived from frozen sperm was similar to the reprogramming of embryos derived from fresh sperm. The results reported in this study indicate that sperm frozen without cryoprotectant is epigenetically safe for ICSI.  相似文献   

9.
The objective of this study was to investigate the preservation of spermatozoa in a simple medium without freezing and to examine the effects of the preserved sperm on fertilization and development after injection into mature mouse oocytes. Mouse spermatozoa were collected from two caudae epididymides of mature B6D2F1 males and stored under various conditions: 1) in KSOMaa medium (potassium simplex optimized medium with amino acids) supplemented with 0, 1, or 4 mg/ml BSA and held at room temperature (RT, 27 degrees C); 2) in KSOMaa medium containing 4 mg/ml BSA (KSOM-BSA) and held at 4 degrees C, RT, or 37 degrees C (CO2 incubator); 3) in KSOM-BSA with osmolarity ranging from 271 to 2000 mOsmol, adjusted by addition of NaCl and held at 4 degrees C; and 4) a two-step preservation system consisting of storage in 800 mOsmol KSOM-BSA for 1 wk at RT followed by storage at -20 degrees C. Preservation of mouse spermatozoa at 4 degrees C in a medium with high osmolarity (700-1000 mOsmol) resulted in the highest frequency of live births after intracytoplasmic sperm injection (ICSI) into mature oocytes. The optimal conditions for preservation of mouse spermatozoa were 800 mOsmol KSOM containing 4 mg/ml BSA and a holding temperature of 4 degrees C. More than 40% of oocytes injected with sperm heads stored under these conditions for 2 mo developed to the morula/blastocyst stage in vitro and 39% of the embryos developed to term after transfer to recipient mice. Our results also indicate that mouse spermatozoa can be stored in 800 mOsmol KSOM-BSA medium at RT for 1 wk and then at -20 degrees C for up to 3 mo and retain their competence for ICSI. These new preservation methods permit extended conservation of viable spermatozoa that are capable of supporting normal embryonic development and the live birth of healthy offspring after ICSI.  相似文献   

10.
Freeze-dried sperm is applicable to the storage and transport of genetic material. We recently reported that freeze-dried mouse sperm required temperatures lower than −80 °C for long-term preservation and concluded that it was necessary to explore freeze-drying conditions before long-term preservation of sperm becomes viable. In the current study, we determined the percentage of sperm with elevated levels of DNA fragmentation using a sperm chromatin structure assay (SCSA), a technique not previously reported for the evaluation of freeze-dried mouse sperm. We applied SCSA to mouse sperm freeze-dried under four conditions (various combinations of primary drying pressure of 0.04 and 0.37 hPa and storage temperatures of 4 and −80 °C) and compared the results with the embryonic developmental rates of freeze-dried sperm after intracytoplasmic sperm injection (ICSI) and with comet assay results. The DNA fragmentation index values under the four conditions determined by SCSA had good correlation with the developmental rate to the blastocyst stage of embryos from ICSI with freeze-dried mouse sperm. We concluded that the SCSA method applied to freeze-dried mouse sperm after storage will lead to not only clarification of the developmental rate derived from ICSI using freeze-dried sperm but also to improvements in the freeze-drying and storage processes.  相似文献   

11.
This study was designed to examine whether rat spermatozoa after freeze-drying and 1-year storage can participate in full-term development following intracytoplasmic sperm injection (ICSI). Cauda epididymal spermatozoa from Crlj:Wistar rats were frozen in liquid nitrogen (LN(2)), first dried for 14 hr at 0.37 hPa and then for 3 hr at 0.001 hPa. The dried spermatozoa were stored for 1 year in a desiccator at +25 degrees C, or in a refrigerator at +4 degrees C, or in LN(2) at -196 degrees C. Controls consisted of sperm that had only been frozen and stored in LN(2). After being stored, spermatozoa were sonicated to dissociate the sperm tail and were injected into oocytes from superovulated Slc:SD rats. The respective fertilization rates of oocytes injected with frozen sperm, or with freeze-dried sperm stored at +25, +4, and -196 degrees C were 79%, 75%, 70%, and 73%. However, the corresponding cleavage rates of injected oocytes were 63%, 1%, 38%, and 36%. After transfer of >80 zygotes of each group into recipients, the respective percentages of full-term normal offspring resulting from frozen sperm or from freeze-dried sperm stored at +25, +4, and -196 degrees C were 36%, 0%, 7%, and 14%. These results demonstrate that the storage temperature significantly influenced the likelihood of term development of rats produced by injection of oocytes with freeze-dried spermatozoa. Chromosomal analysis of the rat spermatozoa in the ICSI oocytes indicated that chromosomal aberration in freeze-dried spermatozoa stored at +25 degrees C (100%) occurred more frequently than in frozen control spermatozoa (41%) and freeze-dried spermatozoa stored at -196 degrees C (35%), and the frequency of chromosomal aberrations in freeze-dried spermatozoa stored at +4 degrees C (65%) was the intermediate. In conclusion, rat spermatozoa freeze-dried and stored at +4 degrees C for 1 year are capable of participating in full-term development after ICSI.  相似文献   

12.
Kaneko T  Kimura S  Nakagata N 《Theriogenology》2007,68(7):1017-1021
Sperm preservation is a valuable technique for maintaining genetic resources in biomedical research. In the present study, 10mM Tris-HCl and 1mM EDTA (TE buffer; a simple solution without cryoprotection), was used to freeze or freeze-dry rat sperm. The results were compared with rat sperm frozen using a solution containing Equex STM and egg yolk. Sperm from Wistar and Sprague-Dawley (SD) rats were evaluated by injecting them individually into oocytes derived from the same strain. Of the oocytes that survived after sperm injection, more than 94% were fertilized in all treatments of both strains. In the Wistar rat, 27, 20, 43, and 30% of 2-cell embryos developed to blastocysts, and 35, 9, 11, and 14% of 2-cell embryos developed to offspring from oocytes injected with fresh, frozen (Equex STM/egg yolk), frozen (TE buffer), and freeze-dried sperm, respectively. Using the analagous sources of sperm in the SD rat, 45, 14, 27, and 7% of 2-cell embryos developed to blastocysts, and 22, 0, 14, and 4% of 2-cell embryos developed to offspring. These results demonstrated that rat sperm could be frozen or freeze-dried using TE buffer. We concluded that this simple preservation method, in which cryoprotection was not required, allowed sperm to be preserved efficiently with maintenance of their fertilizing ability.  相似文献   

13.
The fertilization of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa was evaluated. Activation and male pronuclear (MPN) formation were better in oocytes injected with isolated freeze-dried sperm heads than whole freeze-dried spermatozoa, but cleaved embryos were generally difficult to develop to the morula or blastocyst stage. When spermatozoa were freeze-dried for 24 h, oocyte activation and MPN formation in activated oocytes after sperm head injection were inhibited. Embryo development to the blastocyst stage was only obtained after injecting sperm heads isolated from spermatozoa freeze-dried for 4 h and stored at 4 degrees C. The proportion of embryos that developed to the blastocyst stage was not increased by the treatment of injected oocytes with Ca ionophore (5-10 microM). Increasing the sperm storage time did not affect oocyte activation or MPN formation, but blastocyst development was observed only after 1 mo of storage. These results demonstrate that pig oocytes can be fertilized with appropriately freeze-dried spermatozoa and that the fertilized oocytes can develop to the blastocyst stage.  相似文献   

14.
The transportation of cryopreserved spermatozoa is an economical, efficient, and safe method for the distribution of mouse strains from one facility to another. However, spermatozoa from some strains, including C57BL/6 (B6), are very sensitive to freezing and thawing and frequently fail to fertilize eggs by conventional in vitro fertilization methods at the recipient mouse facility. Since many genetically engineered mice have the B6 genetic background, this sensitivity poses a major obstacle to studies of mouse genetics. We investigated the feasibility of transporting spermatozoa within epididymides under non-freezing conditions. First, we examined the interval that B6 and B6D2F1 (BDF1) spermatozoa retained their ability to fertilize when stored within epididymides at low temperatures (5 degrees C or 7 degrees C). Fertilization rates were >50%, irrespective of the spermatozoa used, when epididymides were stored for 3d at 7 degrees C. B6 spermatozoa, but not BDF1 sperm, had better retention of fertilizing ability at 7 degrees C versus 5 degrees C. We then transported freshly collected B6 and BDF1 epididymides from a sender colony to a recipient colony using a common package delivery service, during which the temperature was maintained at 5 degrees C or 7 degrees C for 2d. Sufficiently high fertilization rates (68.0-77.5%) were obtained for all experimental groups, except for B6 spermatozoa transported at 5 degrees C. These spermatozoa were successfully cryopreserved at the recipient facility and, yielded post-thaw fertilization rates of 27.6-66.4%. When embryos derived from the B6 spermatozoa that were transported at 7 degrees C were transferred into recipient females, 52.7% (38/72) developed to term. In conclusion, transportation of epididymides at refrigerated temperatures is a practical method for the exchange of mouse genetic resources between facilities, especially when these facilities do not specialize in sperm cryopreservation. For the B6 mouse strain, the transportation of epididymides at 7 degrees C rather than 5 degrees C, is recommended.  相似文献   

15.
The effect of varying the sperm concentration between 2 × 105 sperm/ml and 8 × 106 sperm/ml on fertilization of cumulus-free, zona-intact F1 (CBA × C57BL) mouse ova by QS and F1 (CBA × C57BL) mouse spermatozoa was studied. The spermatozoa from both strains of mice exhibited optimal fertilization rates at 2 × 106 sperm/ml. However, at sperm concentrations greater than 4 × 106 sperm/ml and less than 1 × 106 sperm/ml, fertilization rates were significantly reduced. F1 spermatozoa were more susceptible to dilution than QS spermatozoa. A significant interaction between strain and sperm concentration indicated that the two strains produced different fertilization rates at different sperm densities. Extracts of epididymal fluid, medium from capacitated spermatozoa, or ampulla fluid did not improve the fertilization rate at 2 × 105 sperm/ml, but retaining the cumulus oophorus did. The decrease in fertilization rate at 8 × 106 sperm/ml can in part be attributed to a nondialysable inhibitor from the neat sperm preparation that appeared to be of epididymal origin.  相似文献   

16.
Potential methods for cryopreservation of mouse spermatozoa are freeze-drying, desiccation, and suspension in EGTA Tris-HCl buffered solution (ETBS: 50 mM NaCl, 50 mM EGTA, and 10 mM Tris-HCl). To determine the duration that mouse spermatozoa suspended in ETBS-based solutions could retain their normal characteristics without freezing, spermatozoa collected from the cauda epididymis were suspended in ETBS or in ETBS supplemented with the antioxidants, dimethyl sulfoxide (DMSO), or DL-alpha-tocopherol acetate (Vitamin E acetate; VEA) diluted in DMSO, then held at ambient temperature (22-24 degrees C) for up to 9 days. When oocytes were injected with spermatozoa preserved in ETBS alone, activation rates of oocytes and chromosome integrity at the first cleavage metaphase decreased at 1 day (P < 0.001) and 2-4 days (P < 0.01) following treatment. When oocytes were injected with spermatozoa preserved in ETBS supplemented with DMSO or VEA/DMSO, chromosome integrity did not decrease significantly (through 9 days of preservation). Although DMSO maintained sperm chromosome integrity more effectively than VEA/DMSO up to 2-4 days (91 and 67%, normal karyotypes in DMSO and VEA/DMSO, respectively), VEA/DMSO helped to maintain the ability of spermatozoa to activate oocytes, but did not enhance the maintenance of sperm chromosome integrity. These results suggested that deterioration of spermatozoa preserved in ETBS alone was delayed by supplementation with antioxidants.  相似文献   

17.
Methods routinely used to preserve mouse spermatozoa require that the male be killed to recover spermatozoa from the epididymides. Here we obtained multiple samples of ejaculated spermatozoa from normal fertile C57BL/6 and infertile Hook1/Hook1 (formerly known as azh/azh) mutant males from uteri after mating, thus avoiding termination of the males. Ejaculated sperm were preserved by conventional cryopreservation or by rapid freezing without cryoprotection, and were injected into the oocytes by intracytoplasmic sperm injection (ICSI). The proportions of oocytes that survived, became activated, and developed into two-cell embryos were similar when comparing the two preservation methods in wild-type versus Hook1/Hook1 mice and tested mice versus controls (fresh and rapid-frozen epididymal and fresh ejaculated sperm). Two-cell embryos were transferred into the oviducts of pseudopregnant females, and fetal development was examined at Day 15 of gestation. A total of 39%-54% of transferred embryos produced with preserved ejaculated sperm implanted. Live, normal fetuses (11%-17%) were obtained in all examined groups and from all males included in the study. More implants (71%-82%) and fetuses (28%-31%) were noted in controls. Lower developmental potentials of embryos produced with preserved ejaculated sperm might be due to their capacitation status; the majority of sperm retrieved from the uterus were capacitated. This study bears significance for the maintenance and distribution of novel mouse strains. The method is applicable for all types of mice, including those with male infertility syndromes. The sole requirement is that the male of interest is able to copulate and its ejaculate contains spermatozoa.  相似文献   

18.
Sperm preservation is a useful technique for maintaining valuable animal strains. Rat sperm could be frozen or freeze-dried in a simple Tris-EDTA solution (TE buffer), and oocytes that were fertilized with these sperm by intracytoplasmic sperm injection (ICSI) developed into offspring. Genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system enables the rapid production of genetically modified rats. The recent innovative method, named the TAKE method, could easily produce genome edited rats by electroporation of endonucleases into embryos. Although various rat strains have been applied for genome editing, genome editing using strains that were preserved as sperm took longer because it required collecting embryos after maturation of animals regenerated from sperm. To reduce the production period, we directly electroporated Cas9 protein and gRNA into oocytes that were injected with frozen or freeze-dried sperm in TE buffer. No effect of electroporation until 30 V to ICSI-embryos derived from frozen or freeze-dried sperm were shown in the development of offspring. Furthermore, the rate of genome editing in offspring was high (56% for frozen and 50% for freeze-dried sperm). These results concluded that the combination of ICSI and the TAKE method was useful for the rapid production of genome-edited animals from sperm that have been preserved as genetic resources.  相似文献   

19.
Re-establishment of mouse strains used for mutagenesis and transgenesis has been hindered by difficulties in freezing sperm. The use of intracytoplasmic sperm injection (ICSI) enables the production of embryos for the restoration of mouse lines using sperm with reduced quality. By using ICSI, simplified sperm-freezing methods such as snap freezing can be explored. We examined the capacity of embryos from the inbred C57Bl/6J and 129Sv/ImJ mouse strains, commonly used for transgenic and N-ethyl-N-nitrosourea mutagenesis purposes to develop to blastocysts in vitro and to term following ICSI with sperm frozen without cryoprotectant. The results were compared to F1 (C57BlxCBA) hybrid embryos. Following freezing, sperm were immotile but could fertilize oocytes at similar rates to fresh sperm. However, embryo development in vitro to the blastocyst stage was reduced in all three strains. No pups were born from C57Bl/6J or 129Sv/ImJ embryos obtained from frozen sperm following transfer to foster females, and only a limited number of F1 embryos developed to term. Activation of oocytes injected with frozen sperm with 1.7 mM Sr2+ (SrCl2) did result in the birth of pups in all three strains. We conclude that the inability of sperm frozen without cryoprotectants to effectively activate oocytes may affect embryo development to term and can be overcome by strontium activation. This may become an effective strategy for sperm preservation and the restoration of most popular strains used for genetic modifications.  相似文献   

20.
We have examined the effects in vitro of the ionic composition, pH and temperature on the motility by the spermatozoa of the Japanese eel (Anguilla japonica). Milt was obtained from 10 males that had been artificially matured by repeated injections of hCG. Sperm motility was monitored with a VHS video recorder and a video camera connected to a microscope. The results showed that most of the sperm were highly motile in 250-700 mM NaCl, 250-650 mM KCl and 350-550 mM CaCl2 solution. The longest duration of sperm motility recorded in 500 mM NaCl, 250 mM KCl and 350 mM CaCl2 solution. Sperm was not motile when suspended at pH 2, sperm motility was observed at pH 3, there was a relatively higher percentage of motile sperm in solutions at pH 4-12 (above 80%). The motility and duration increased within 18-24°C and decreased at the range of 24-30°C. Appropriate K+ ion concentration in the active medium could enhance the percent motility and duration of eel spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号