首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesophyll mitochondria from green leaves of the C(4) plants Zea mays (NADP-ME-type), Panicum miliaceum (NAD-ME-type) and Panicum maximum (PEP-CK-type) oxidized NADH, malate and succinate at relatively high rates with respiratory control, but glycine was not oxidized. Among the mitochondrial proteins involved in glycine oxidation, the L, P and T proteins of glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) were present, while the H protein of GDC was undetectable. In contrast, mesophyll mitochondria from etiolated leaves of Z. mays oxidized glycine at a slow rate and with no respiratory control, and contained the H protein as well as the other GDC proteins and SHMT. The T and P proteins and SHMT were present in the mitochondria from etiolated leaves at significantly higher levels than in those from green leaves of Z. mays. The content of the L protein was almost identical in all three C(4) plants examined and close to the value obtained for mesophyll mitochondria from the C(3) plant Pisum sativum, whereas the other GDC proteins and SHMT were less abundant than the L protein. We discuss possible reasons for the H protein's absence in mesophyll mitochondria of C(4) plants, as well as the role(s) the other GDC components could play in its absence.  相似文献   

2.
The DNase I sensitivity of the nuclear genes encoding the NADPH-protochlorophyllide oxidoreductase, the light-harvesting chlorophyll a/b protein (LHCP), the hordeins and a 15-kDa protein of unknown function was assayed in chromatin of etiolated and green leaves and endosperm tissue of barley (Hordeum vulgare L.). A tissue-specific differentiation of chromatin structure was found for the LHCP, hordein and 15-kDa protein genes. The genes for the LHCP and the 15-kDa protein, which are expressed in leaf tissue, display DNase I sensitivity in leaves but not in endosperm. Hordein genes which are expressed solely in endosperm, were insensitive to low levels of digestion with DNase I in leaves but sensitive in endosperm. The effect of light on chromatin structure was determined by comparing leaves of etiolated plants and plants which had been grown under a day/night cycle. Only in the case of the 15-kDa protein is there a remarkable change from a DNAse-I-sensitive configuration in etiolated leaves to a more resistant one in leaves from illuminated plants. The gene for the NADPH-protochlorophyllide oxidoreductase was found to be equally sensitive to DNase I in leaves and endosperm.  相似文献   

3.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

4.
A Zea mays callus culture containing chlorophyll was established and grown photomixotrophically. Cell chloroplast structure, and pigment and soluble protein contents were examined. Expression of some key enzymes of C4 carbon metabolism was compared with that of etiolated (heterotrophic) and green photoautotrophic leaves. Chlorophyll content of the callus was 15–20% that of green leaves. Soluble protein content of callus was half that of leaf cells. Electron microscopic observations showed that green callus cells contained only typical granal chloroplasts. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.38) activities in green callus were ca 30% those of green leaves but 2–3 times higher than in etiolated leaves. Quantitative enzyme protein determination, using antibodies specific to maize leaf Rubisco showed that the chloroplastic carboxylase represented about 7% of total soluble protein in green callus, in parallel to its low chlorophyll content. The specific activity of Rubisco in callus and leaves was unchanged. Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity in green callus was about 20% that of green leaves and similar to that measured in etiolated leaves. Apparent Km (PEP) values (0.08 mM) for PEPC isolated from green callus and etiolated leaves were very different from values (0.5 mM) obtained with PEPC from green leaves. These kinetic characteristics together with the absence of inhibition by malate and activation by glucose-6-phosphate suggest that the properties of PEPC isolated from green callus and etiolated maize leaves are very similar to those of PEPPC from C3 plants. Using PEPC antibodies specific to green maize leaf enzyme, immunotitration of PEPC preparations containing identical enzyme units allowed complete precipitation of the green leaf enzyme with increasing antibody volumes. In contrast, 60–70% of the activity of PEPC from etiolated and green callus was inhibited, suggesting low affinity for the maize green leaf PEPC antiserum (typical C4 form). Ouchterlony double diffusion tests revealed only partial recognition of PEPC in green callus and etiolated leaves. NAD-malate dehydrogenase (NAD-MDH, EC 1.1.1.37) activity in callus was 2 and 3 times higher, respectively, than in etiolated and green leaves. NADP-malic enzyme (NADP-ME, EC 1.1.1.40) activity in callus cultures was much lower than in green leaves. All our data support the hypothesis that cultures of fully dedifferentiated chlorophyllous tissues of Zea mays possess a C3-like metabolism.  相似文献   

5.
Hugh Frick  Hans Mohr 《Planta》1972,109(3):281-292
Summary The growth of Lemna minor in darkness is log-linear, at a much reduced rate compared to growth in white or red light. This rate of frond production in darkness is stimulated by kinetin, yeast extract, and thiamine either in green plants transferred directly from the light or in plants which had been grown in the dark for 54 days. (Fig. 1).The magnitude of the stimulation of frond production by interruption of darkgrowth with red light (Fig. 2) is smaller in green than in etiolated plants, and is shown to depend upon the length of time that initially green plants were held in darkness (Fig. 4, Table 2). The stimulation of frond production in either green or etiolated plants does, however, obey the reciprocity law (Fig. 3).The stimulation by red light can be fully and repeatedly nullified by far red light only in etiolated plants, but the efficiency of nullification of the red effect by far red seems to increase in green plants with increasing sets of red + far red exposures (Fig. 5).As the dark-interval between red and far red exposures is lengthened, the efficiency of nullification is lessened significantly for etiolated plants only after 30 min (Fig. 6).  相似文献   

6.
Alternative respiratory pathway was investigated in rice seedlings grown under total darkness, light/dark cycle, or continuous light. The capacity of the alternative pathway was relatively higher in leaves that had longer light exposure. An analysis of rice AOX1 multigene family revealed that AOX1c, but not AOX1a and AOX1b, had a light-independent expression. The alternative oxidase (AOX) inhibitor, salicylhydroxamic acid (SHAM, 1mM), inhibited nearly 68% of the capacity of the alternative pathway in leaves grown under different light conditions. The plants grown under different light periods were treated with SHAM and then were exposed to illumination for 4h. The transition from dark to 4h of light stimulated the capacity of alternative pathway in etiolated rice seedlings and in those grown under light/dark cycle, whereas the capacity of the alternative pathway was constant in seedlings grown under continuous light with additional 4h of illumination. Etiolated leaves did not show any CO(2) fixation after 4h of illumination, and the increase in chlorophyll content was delayed by the SHAM pretreatment. When seedlings grown under light/dark cycle were moved from dark and exposed to 4h of light, increases in chlorophyll content and CO(2) fixation rate were reduced by SHAM. Although these parameters were stable in plants grown under continuous light, SHAM decreased CO(2) fixation rate but not the chlorophyll content. These results indicate that the role and regulation of AOX in light are determined by the developmental stage of plant photosynthetic apparatus.  相似文献   

7.
The effect of light on the activity of phospholipase D (PLD) in oat (Avena sativa L.) seedlings and the dependence of this enzyme activity on the regime of their illumination were studied. The PLD activity in etiolated seedlings was 1.5–2.0-fold higher than in green plants. The illumination of etiolated seedlings with white light resulted in a decrease in PLD activity to its level in the seedlings grown under light. In contrast, the transfer of green seedlings to darkness enhanced the activity of the enzyme up to its level in etiolated seedlings. The illumination of etiolated seedlings with red light inhibited the PLD as well. It was shown that this photoeffect decreased with seedling aging and correlated with a phytochrome content in plants. Far-red light reversed the effect of red light. The involvement of phytochrome in the control of the PLD activity is discussed.  相似文献   

8.
Potato (Solanum tuberosum L. cv. Désirée) plants with an antisense reduction in the P-protein of the glycine decarboxylase complex (GDC) were used to study the interaction between respiration and photorespiration. Mitochondria isolated from transgenic plants had a decreased capacity for glycine oxidation and glycine accumulated in the leaves. Malate consumption increased in leaves of GDC deficient plants and the capacity for malate and NADH oxidation increased in isolated mitochondria. A lower level of alternative oxidase protein and decreased partitioning of electrons to the alternative pathway was found in these plants. The adenylate status was altered in protoplasts from transgenic plants, most notably the chloroplastic ATP/ADP ratio increased. The lower capacity for photorespiration in leaves of GDC deficient plants was compensated for by increased respiratory decarboxylations in the light. This is interpreted as a decreased light suppression of the tricarboxylic acid cycle in GDC deficient plants in comparison to wild-type plants. The results support the view that respiratory decarboxylations in the light are restricted at the level of the pyruvate dehydrogenase complex and/or isocitrate dehydrogenase and that this effect is likely to be mediated by mitochondrial photorespiratory products.  相似文献   

9.
The rates of mitochondrial glycine oxidation estimated by CO2-release and glycine-bicarbonate exchange activities in fully greened tissues are approximately 10 times greater than those of etiolated pea leaves and potato tuber mitochondria. The release of CO2 from glycine in intact mitochondria isolated from dark-grown and nonphotosynthetic tissues was sensitive to inhibitors of mitochondrial electron transport, glycine transport, and glycine decarboxylase activities. The CO2-release and glycine-bicarbonate exchange activities in crude mitochondrial protein extracts from light-grown versus dark-grown tissues exhibited light/dark ratios of 12 and 21, respectively. This suggests that the differences in capacity to oxidize glycine reside with the glycine decarboxylase enzyme complex itself. The complex is composed of four subunit enzymes, the P, H, T, and L proteins, which can be isolated individually and reconstituted into the active enzyme. The activities of P and T proteins were at least 10 times higher in fully greened pea leaves than in the etiolated tissue, while the H and L protein activities were four times higher in these same tissues. The levels of P and T proteins detected immunochemically were substantially lower in total mitochondrial extracts prepared from leaves of dark-grown pea seedlings. Labeling of whole pea seedlings and in vitro protein synthesis with isolated mitochondria indicated that the entire glycine decarboxylase enzyme complex is cytoplasmically synthesized and therefore encoded by the nucleus. Polypeptides synthesized from total leaf polyadenylated mRNA isolated from leaves of both the dark-grown and light-treated peas indicated the presence of P protein. This implies that translatable messages for this enzyme are present at some level throughout leaf development.  相似文献   

10.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

11.
Evidence is given that a selective light-pretreatment of the embryonic axis exerts a deep influence on the greening in primary leaves of 8-day-old etiolated bean seedlings (Phaseolus vulgaris cv. Limburg). After a subsequent dark incubation of sufficient length and a final exposure of the entire plants to continuous illumination the lag phase of chlorophyll synthesis is completely removed. In particular the highly meristematic hook tissue seems to be responsible for this light effect. Lengthening of the dark period following pre-irradiation increased the capability of chlorophyll production in the main white light period, reaching its maximum after about 12 hours of darkness. The period of dark incubation for elimination of the lag phase is considerably longer in plants with shielded leaves than the length of the lag phase in etiolated seedlings of the same age, exposed entirely to continuous light. This difference may be explained by the synergistic effect between leaves and embryonic axis. Evidence for this interorgan cooperation is given by experiments with a selective light-pretreatment of leaves and embryonic axis. After a 5 min pre-exposure to white light of whole plants the leaves of some of the plants were shielded and these plants received a further pre-illumination of 2 hours on their embryonic axis. In all the pre-irradiated, etiolated plants the lag phase of chlorophyll synthesis was eliminated during the main white light period, following a dark incubation of 2 hours. Additional and preferential light activation of the embryonic axis during the pretreatment had no significant effect on chlorophyll production during the white light illumination after a 2 hours dark incubation, but resulted in a lower yield of chlorophylls after 18 hours dark incubation compared to the white light controls, receiving no selective light-pretreatment on the embryonic axis. From our results we can decisively conclude that a simultaneous light-pretreatment of both, leaves and embryonic axis, is more effective and beneficial for building up a capacity of chlorophyll synthesis in the leaves than either a selective light-pretreatment of the embryonic axis alone or a simultaneous pre-illumination of leaves and embryonic axis, immediately followed by an additional preirradiation of the embryonic axis. Therefore, we think that several photoactive sites are involved in de-etiolation processes of intact, etiolated seedings. Light activation of the embryonic axis stimulates the development of this organ and contributes to the greening processes in the leaf. At the same time, by irradiating the leaf, light activates the photo-sensitive site in the leaf itself, which also develops a capacity for chlorophyll synthesis. Both photo-acts are cooperative, explaining the enhanced chlorophyll production. Additional pre-irradiation of the embryonic axis after a short illumination of whole plants favours its own development and reduces the synthetic capacity of the leaf. A prolonged far-red pretreatment induces qualitatively the same response as white light. We assume that these effects on lag phase removal and chlorophyll production, induced in etiolated, primary bean leaves by selective irradiation of the embryonic axis, is a phytochrome-mediated process. Our results indicate a transmission of light-induced stimuli from one organ to another.  相似文献   

12.
The lipids and pigments of corn and soybean leaves grown in light and in dark were examined. The green leaf contained appreciably greater amounts of the two galactolipids, sulfolipid, phosphatidyl glycerol and diphosphatidyl glycerol, while the etiolated leaf had relatively more cerebroside, sterol glucoside, phosphatidyl ethanolamine and lecithin. The prominent component of glycerides was 1,2-diglyceride in green leaf, and triglyceride in etiolated leaf. The green leaf lipids showed a remarkable specificity of component fatty acids, but those of etiolated leaf only at lower rate. From the results, possible functions of the lipids were discussed.  相似文献   

13.
Abstract. Avena sativa L. (oat) seedings were grown 4 d in continuous white light followed by 3 d in darkness. Probes derived from an oat phytochrome cDNA clone (pAP 3.2) were used in slot blot analyses to measure the abundance of phytochrome mRNA in the distinct etiolated and green portions of the leaves produced by these seedlings. Both the green and etiolated portions accumulated phytochrome mRNA to a level of about 85% of the etiolated seedling level. Subsequent experiments with similar seedlings showed that both the green and etiolated portions were capable of inducing a dramatic decline in phytochrome mRNA abundance in response to a saturating red light pulse. Despite the ability of green portions of oat leaves to accumulate phytochrome mRNA and to down-regulate phytochrome mRNA abundance in response to light, no substantial variation in phytochrome mRNA abundance was observed in green oat seedlings maintained on a 12-h day/12-h night cycle. In the same oat seedlings, the abundance of chlorophyll a/b binding protein mRNA fluctuated dramatically during the day/night cycle.  相似文献   

14.
15.
The photosynthesis of ryegrass leaves grown in a simulated sward   总被引:2,自引:0,他引:2  
Plants were taken from simulated swards of perennial ryegrass (Lolium perenne) grown in a controlled environment and the rates of photosynthesis of the youngest fully expanded leaves, and the second and third youngest leaves on the same tillers were measured. The youngest leaves had the highest rates and the third the lowest, with the second leaves intermediate. The rate of photosynthesis in bright light of successive youngest expanded leaves decreased as the swards increased in leaf area, but did not when plants were grown so that the main stem was not shaded. When plants were grown at different densities and the photosynthetic rates of leaves of a particular ontogenetic rank were measured, it was found that leaves on plants from higher densities had lower rates of photosynthesis. Also leaves on plants grown in bright light had higher photosynthetic rates than those on plants grown in dim light. It is concluded that the decline in the photosynthetic capacity of successive leaves in a rapidly growing simulated sward is due to the intense shading to which they are subjected during their expansion.  相似文献   

16.
The photoreduction of protochlorophyllide was studied in leaves and isolated chloroplasts of barley. Leaves of plants which had been preilluminated for varying lengths of time were incubated with [14C]-δ- aminolevulinic acid for 2 h in the dark. The subsequent photoreduction of [14C]-protochlorophyllide was analyzed by high performance liquid chromatography of pigments extracted from illuminated leaves and plastids. The plastids used in this study were isolated in the dark from leaves at the end of the 2 h labelling period. Three major results were obtained:
  • 1

    The extent of protochlorophyllide reduction in vivo was rapidly reduced as a function of the preillumination period. In 24 h preilluminated plants only a small fraction of the radioactively labelled protochlorophyllide was reduced during the subsequent light period.

  • 2

    The amount of NADPH-protochlorophyllide oxidoreductase (EC 1.6.99.-) present in plastids of fully-green plants was drastically reduced relative to levels in plastids of dark-grown plants as estimated by the methods of immunoblotting of plastid proteins and immunogold labelling of ultrathin sections of the leaf tissue.

  • 3

    In etiolated plants light seemed to affect the reduction of protochlorophyllide directly through the excitation of protochlorophyllide. In fully green plants, however, light also affected chlorophyll formation indirectly by the supply of NADPH via photosynthetic electron transport.

  相似文献   

17.
The effect of light on the development of the capacity for alternative pathway respiration was investigated in leaf slices of Belgium endive (Cichorum intybus L. cv. deliva). Dark-grown plants possessed little capacity for the cyanide-insensitive alternative pathway. In contrast, plants grown in continuous light had significant alternative pathway capacity. Light-grown plants also had substantially higher concentrations of ethanol-soluble carbohydrates in their leaves than plants grown in complete darkness. Despite these differences in leaf carbohydrate status and alternative pathway capacity of light- and dark-grown leaf tissue, no differences were found in the activity of the alternative pathway, which was negligible in both treatments. Dark-grown plants were adenylate restricted, as indicated by the increase in cytochrome pathway activity following uncoupling. Adenylates did not limit respiration in light-grown leaf tissue. Plants that had been grown for 8d in complete darkness were also transferred to continuous light. Respiration of dark controls steadily declined over 11d following the transfer of plants to the light, due primarily to a decrease in cytochrome pathway activity. No such decline was observed in the plants transferred to continuous light. Transfer to continuous light led to significant increases in alternative pathway capacity relative to the dark controls. Alternative pathway activity remained negligible in both the dark controls and in plants transferred to continuous light. The results of this study suggest then that light per se may be responsible for the induction of alternative pathway capacity in Belgium endive.  相似文献   

18.
The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.  相似文献   

19.
Photosynthetic and respiratory activities have been measured in leaves of Hordeum vulgare L. var. Manchuria (barley) after infection with Erysiphe graminis var. hordei (powdery mildew). Two isogenic lines, one resistant to infection and the other highly susceptible, were examined.

These isogenic lines showed very different physiological responses following infection. Photosynthesis and the chlorophyll content of resistant leaves was unaffected by infection. Respiration increased slightly and this was accompanied by small increases in activities of enzymes of glycolysis, the pentose-P pathway and the tricarboxylic acid cycle.

The infection of susceptible leaves resulted in a slight increase in photosynthesis 48 hours after inoculation, but subsequently there was a progressive decrease in the photosynthesis of these leaves compared with that of noninfected leaves. The capacity of infected leaves for partial reactions of photosynthesis such as the Hill reaction and the photoreduction of nicotinamide adenine dinucleotide phosphate (NADP1) decreased during the later stages of infection. The levels of chlorophyll, NADPH-diaphorase and aldolase also declined. There was no detectable difference in the respiration of infected and noninfected leaves until 48 hours after inoculation. After this time, the infected leaves showed a higher respiration, the maximum difference occurring about 144 hours after inoculation. The respiratory increase was not accompanied by significant changes in the levels of enzymes of glycolysis and the tricarboxylic acid cycle with the exception of malate dehydrogenase which was lower in infected leaves. In contrast, the activities of glucose-6-P dehydrogenase and 6-P-gluconate dehydrogenase showed changes similar to that observed for respiration.

The respiration and the activities of glucose-6-P dehydrogenase and 6-P-gluconate dehydrogenase did not increase in infected leaves of etiolated plants, even when excellent growth of the fungus was established by growing the plants in White's basal medium supplemented with sucrose. The respiration of a susceptible mutant barley (the yellow-green virescent mutant of the variety Himalaya) when grown in the light at 11° was not changed by infection although the characteristic respiratory rise occurred in plants grown at 15°. At the lower temperature chloroplasts fail to develop in this mutant, although development is normal at 15°.

It is suggested that the pathogen is not directly responsible for the increase in respiration in green leaves, rather that this is a response in the host cells to a loss of photosynthetic capacity.

  相似文献   

20.
Light Dependent Increase of Triosephosphate Dehydrogenase in Pea Leaves   总被引:4,自引:4,他引:0  
Data from 3 lines of investigation were presented indicating that chlorophyll is not necessary for the increase in the triphosphopyridine nucleotide-requiring triosephosphate dehydrogenase accompanying the illumination of etiolated pea plants. These include A) the kinetics of the development of chlorophyll and enzyme activity, B) the presence of enzyme activity in leaves grown in the dark on normal plants and C) the high specific enzyme activity in leaves of a chlorophyll-less mutant.It was also shown that the light-initiated increase of enzyme activity continues for several days after removal from the light and that illumination with far-red light before the dark period inhibited, but did not abolish, this increase. The ability of green plants to continue to produce the enzyme in the dark was eventually lost with time, for after 7 days in the dark a stimulation in leaf protein formation was not accompanied by an increase in enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号