首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The role of roots penetrating various undisturbed soil horizons beneath loose layer in water use and shoot growth of maize was evaluated in greenhouse experiment. 18 undisturbed soil columns 20 cm in diameter and 20 cm in height were taken from the depths 30–50 cm and 50–70 cm from a Brown Lowland soil, a Pseudogley and a Brown Andosol (3 columns from each depth and soil). Initial resistance to penetration in undisturbed soil horizons varied from 2.5 to 8.9 MPa while that in the loose layer was 0.01 MPa. The undisturbed horizons had a major effect on vertical arrangement of roots. Root length density in loose layer varied from 96 to 126 km m-3 while in adjacent stronger top layers of undisturbed horizons from 1.6 to 20.0 km m-3 with higher values in upper horizons of each soil. For specific root length, the corresponding ranges were 79.4–107.7 m g-1 (on dry basis) and 38.2–63.7 m g-1, respectively. Ratios of root dry weight per unit volume of soil between loose and adjacent undisturbed layers were much lower than those of root length density indicating that roots in undisturbed horizons were produced with considerably higher partition of assimilates. Root size in undisturbed horizons relative to total roots was from 1.1 to 38.1% while water use from the horizons was from 54.1 to 74.0%. Total water use and shoot growth were positively correlated with root length in undisturbed soil horizons. There was no correlation between shoot growth and water use from the loose layers.  相似文献   

2.
BACKGROUND AND AIMS: The impedance to root growth imposed by soil can be decreased by both mucilage secretion and the sloughing of border cells from the root cap. The aim of this study is to quantify the contribution of these two factors for maize root growth in compact soil. METHODS: These effects were evaluated by assessing growth after removing both mucilage (treatment I -- intact) and the root cap (treatment D -- decapped) from the root tip, and then by adding back 2 micro L of mucilage to both intact (treatment IM -- intact plus mucilage) and decapped (treatment DM -- decapped plus mucilage) roots. Roots were grown in either loose (0.9 Mg m(-3)) or compact (1.5 Mg m(-3)) loamy sand soils. Also examined were the effects of decapping on root penetration resistance at three soil bulk densities (1.3, 1.4 and 1.5 Mg m(-3)). KEY RESULTS: In treatment I, mucilage was visible 12 h after transplanting to the compact soil. The decapping and mucilage treatments affected neither the root elongation nor the root widening rates when the plants were grown in loose soil for 12 h. Root growth pressures of seminal axes in D, DM, I and IM treatments were 0.328, 0.288, 0.272 and 0.222 MPa, respectively, when the roots were grown in compact soil (1.5 Mg m(-3) density; 1.59 MPa penetrometer resistance). CONCLUSIONS: The contributions of mucilage and presence of the intact root cap without mucilage to the lubricating effect of root cap (percentage decrease in root penetration resistance caused by decapping) were 43 % and 58 %, respectively. The lubricating effect of the root cap was about 30 % and unaffected by the degree of soil compaction (for penetrometer resistances of 0.52, 1.20 and 1.59 MPa).  相似文献   

3.
Field soils contain localized zones of larger penetration resistance within peds and compacted layers, while cracks and biopores offer low resistance pathways to roots. Root responses to such localized conditions have not been investigated in detail. This study examined what happens to the root elongation rate when roots grew through a layer of hard soil into a layer of looser soil for a 4 day period. The experiment was performed twice; firstly with the shoot in continuous darkness, and secondly with it exposed to a day-night cycle to prevent etiolation of the shoot. Pea seedlings were grown in columns of a sandy loam soil which was packed to bulk densities of 0.85, 1.1, 1.3 or 1.4 Mg/m3 in the top layer and 0.85 Mg/m3 in the bottom layer. The root elongation rate in the top layer of 1.4 Mg/m3 soil (penetrometer resistance=1.8 MPa) was only 55% of the elongation rate in the top layer of 0.85 Mg/m3 soil (penetrometer resistance=0.06 MPa). The elongation rate of roots that had grown through the top layer of 1.4 Mg/m3 soil into the bottom layer of loose soil was reduced by some residual effect of the mechanical impedance. The root elongation rate in the bottom layer of loose soil decreased as the penetrometer resistance of the top layer of soil increased. The daily elongation rate of the roots in the bottom layer that had grown through the 1.4 Mg/m3 soil averaged only about 65% of the elongation rate of the roots that had grown through the 0.85 Mg/m3 soil. This residual effect of mechanical impedance on root elongation persisted for at least 2 days and was more severe in the day-night cycle experiment than in the dark experiment. These results have important implications for modelling root elongation in any soil in which the soil strength changes with distance or with time.  相似文献   

4.
The effects of vesicular-arbuscular mycorrhizal (VAM) colonisation on phosphorus (P) uptake and growth of clover (Trifolium subterraneum L.) in response to soil compaction were studied in three pot experiments. P uptake and growth of the plants decreased as the bulk density of the soil increased from 1.0 to 1.6 Mg m-3. The strongest effects of soil compaction on P uptake and plant growth were observed at the highest P application (60 mg kg-1 soil). The main observation of this study was that at low P application (15 mg kg-1 soil), P uptake and shoot dry weight of the plants colonised by Glomus intraradices were greater than those of non-mycorrhizal plants at similar levels of compaction of the soil. However, the mycorrhizal growth response decreased proportionately as soil compaction was increased. Decreased total P uptake and shoot dry weight of mycorrhizal clover in compacted soil were attributed to the reduction in the root length. Soil compaction had no significant effect on the percentage of root length colonised. However, total root length colonised was lower (6.6 m pot-1) in highly compacted soil than in slightly compacted soil (27.8 m pot-1). The oxygen content of the soil atmosphere measured shortly before the plants were harvested varied from 0.18 m3m-3 in slightly compacted soil (1.0 Mg m-3) to 0.10 m3m-3 in highly compacted soil (1.6 Mg m-3).  相似文献   

5.
Spatial and temporal dynamics of biomass allocation within and between organs were investigated in seedlings of two birch species of contrasting successional status. Seedlings of Betula alleghaniensis Britt (yellow birch) and B. populifolia Marsh (gray birch) were grown for 6 weeks at two nutrient levels in rectangular plexiglass containers to allow non-destructive estimates of root growth, production and loss. Leaf area and production were simultaneously monitored. Yellow birch responded more to nutrient level than gray birch in terms of total biomass, shoot biomass, leaf area and root length. Yellow birch also flexibly altered within-organ allocation (specific leaf area, specific root length and specific soil amount). In contrast, gray birch altered between-organ allocation patterns (root length:leaf area and soil amount:leaf area ratios) more than yellow birch in response to nutrient level. Yellow birch showed greater overall root density changes within a very compact root system, while gray birch showed localized root density changes as concentric bands of new root production spread through the soil. Species differ critically in their responses of standing root length and root production and loss rates to nutrient supply. Early successional species such as gray birch are hypothesized to exhibit higher plasticity in varied environments than later successional species such as yellow birch. Our results suggest that different patterns of allocation, within and between plant organs, do not necessarily follow the same trajectories. To characterize thoroughly the nature of functional flexibility through ontogeny, within- and between-organ patterns of allocation must be accounted for.  相似文献   

6.
Cultivated crisphead lettuce (Lactuca sativa L.) has a shallower root system than its wild relative, Lactuca serriola L. The effects of localized soil water, at depth, on plant water relations, gas exchange and root distribution were examined in the two species using soil columns with the soil hydraulic-ally separated into two layers, at (0–20 cm and 20–81) cm, but permitting root growth between the layers. Three treatments were imposed on 7-week-old plants, and maintained for 4 weeks: (i) watering, both layers to field capacity; (ii) drying the upper layer while watering the lower layer to field capacity, and (iii) drying both layers. Drying only 0–20 cm of soil had no effect on leaf water status, net photosynthesis, stomatal conductance or biomass production in L. serriola compared to a well-watered control, but caused a short-term reduction (10 d) in leaf water status and photosynthesis in L. sativa that reduced final shoot production. The different responses may be explained by differences in root distribution. Just before the treatments commenced, L. serriola had 50% of total root length at 20–80 cm compared to 35% in L. sativa. Allocation of total biomass to roots in L. serriola was approximately double that in L. sativa. The wild species could provide germplasm for cultivated lettuces to extract more soil water from depth, which may improve irrigation efficiency.  相似文献   

7.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

8.
Plant nutrition and growth: Basic principles   总被引:2,自引:0,他引:2  
Soil compaction may restrict shoot growth of sugar beet plants. Roots, however, are the plant organs directly exposed to soil compaction and should therefore be primarily affected. The aim of this study was to determine the influence of mechanical resistance and aeration of compacted soil on root and shoot growth and on phosphorus supply of sugar beet. For this purpose, a silt loam soil was adjusted to bulk densities of 1.30, 1.50 and 1.65 g cm–3 and water tensions of 300 and 60 hPa. Sugar beet was grown in a growth chamber under constant climatic conditions for 4 weeks. Both, decrease of water tension and increase of bulk density impeded root and shoot growth. In contrast, the P supply of the plants was differently affected. At the same air-filled pore volume, the P concentration of the shoots was reduced by a decrease of soil water tension, but not by an increase of bulk density. Both factors also reduced root length and root hair formation, however, in compacted soil the plants partly substituted for the reduction of root size by increasing the P uptake efficiency per unit of root. Shoot growth decreased when root growth was restricted. Both characteristics were closely related irrespective of the cause of root growth limitation by either compaction or water saturation. It is therefore concluded that shoot growth in both the compacted and the wet soil was regulated by root growth. The main factor impeding root growth in compacted soil was penetration resistance, not soil aeration.FAX no corresponding author: +49551 5056299  相似文献   

9.
Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.  相似文献   

10.
Isogenic wild-type (Ailsa Craig) and abscisic acid (ABA)-deficient mutant (flacca) genotypes of tomato were used to examine the role of root-sourced ABA in mediating growth and stomatal responses to compaction. Plants were grown in uniform soil columns providing low to moderate bulk densities (1.1–1.5 g cm?3), or in a split-pot system, which allowed the roots to divide between soils of the same or differing bulk density (1.1/1.5 g cm?3). Root and shoot growth and leaf expansion were reduced when plants were grown in compacted soil (1.5 g cm?3) but leaf water status was not altered. However, stomatal conductance was affected, suggesting that non-hydraulic signal(s) transported in the transpiration stream were responsible for the observed effects. Xylem sap and foliar ABA concentrations increased with bulk density for 10 and 15 days after emergence (DAE), respectively, but were thereafter poorly correlated with the observed growth responses. Growth was reduced to a similar extent in both genotypes in compacted soil (1.5 g cm?3), suggesting that ABA is not centrally involved in mediating growth in this severely limiting ‘critical’ compaction stress treatment. Growth performance in the 1.1/1.5 g cm?3 split-pot treatment of Ailsa Craig was intermediate between the uniform 1.1 and 1.5 g cm?3 treatments, whereas stomatal conductance was comparable to the compacted 1.5 g cm?3 treatment. In contrast, shoot dry weight and leaf area in the split-pot treatment of flacca were similar to the 1.5 g cm?3 treatment, but stomatal conductance was comparable to uncompacted control plants. These results suggest a role for root-sourced ABA in regulating growth and stomatal conductance during ‘sub-critical’ compaction stress, when genotypic differences in response are apparent. The observed genotypic differences are comparable to those previously reported for barley, but occurred at a much lower bulk density, reflecting the greater sensitivity of tomato to compaction. By alleviating the severe growth reductions induced when the entire root system encounters compacted soil, the split-pot approach has important applications for studies of the role of root-sourced signals in compaction-sensitive species such as tomato.  相似文献   

11.
Wheat plants were grown in columns of soil until early stem elongation at a wide range of constant root temperatures. Two light environments were imposed and three levels of nitrogen fertilizer added at sowing. Shoot and root development and growth were measured by destructive sampling to investigate the combined effects of temperature and changing nutrient and assimilate supply. Both mainstem leaf and root axis production were linearly related to thermal time above a base temperature of 0°C. Low irradiance affected the appearance of mainstem tillers and associated nodal root axes. Nitrogen had little effect on shoot or root development but increased shoot area between 6 and 8 mainstem leaves. Higher temperatures and supplementary light resulted in larger root systems when compared at equivalent times after sowing. Total root length and root dry weight increased exponentially with thermal time, based on the mean of 4 cm soil and 2 cm air temperatures, but no single relation existed for all temperature and light treatments. Total plant dry matter, root length and root dry weight increased linearly with accumulated, intercepted, photosynthetically active radiation. Root growth responded less than the shoot to supplementary light. Increasing temperature reduced the proportion of root weight to total plant weight.  相似文献   

12.
The growth performance of Rhizophora apiculata Blume (mangrove) seedlings in the presence and absence of exogenous gibberellic acid (GA3) under different combinations of salinity and light was analyzed. Root and shoot growth responses of 75-day old seedlings in liquid-culture, were measured. It was concluded that light exhibited a significant inhibitory effect on all the growth parameters-number of primary roots, primary root length, shoot elongation, number of leaves, total leaf area; and, the GA3 treatment singly or in combinations with light, showed a significant influence on the total leaf area and primary root length.  相似文献   

13.
Deep rooting is critical for access to water and nutrients found in subsoil. However, damage to soil structure and the natural increase in soil strength with depth, often impedes root penetration. Evidence suggests that roots use macropores (soil cavities greater than 75 μm) to bypass strong soil layers. If roots have to exploit structures, a key trait conferring deep rooting will be the ability to locate existing pore networks; a trait called trematotropism. In this study, artificial macropores were created in repacked soil columns at bulk densities of 1.6 g cm−3 and 1.2 g cm−3, representing compact and loose soil. Near isogenic lines of wheat, Rht-B1a and Rht-B1c, were planted and root–macropore interactions were visualized and quantified using X-ray computed tomography. In compact soil, 68.8% of root–macropore interactions resulted in pore colonization, compared with 12.5% in loose soil. Changes in root growth trajectory following pore interaction were also quantified, with 21.0% of roots changing direction (±3°) in loose soil compared with 76.0% in compact soil. These results indicate that colonization of macropores is an important strategy of wheat roots in compacted subsoil. Management practices to reduce subsoil compaction and encourage macropore formation could offer significant advantage in helping wheat roots penetrate deeper into subsoil.  相似文献   

14.
匍匐茎草本金戴戴对盐分梯度的表型可塑性   总被引:14,自引:2,他引:12       下载免费PDF全文
 研究了匍匐茎型克隆草本金戴戴(Halerpestes ruthenica) 4种基株(基因型)对不同盐分处理(0,85.5, 171.0, 256.5和342.0 mM NaCl)的表型可塑性。随着盐分浓度的增加,实验植物与生长相关的性状指标 (如植株干重、总叶面积、分株数和总匍匐茎长度) 显著减小。植株干重、总叶面积和总匍匐茎长度具有显著的基株间差异。实验植物与形态相关的性状指标 (如平均叶柄长和根冠比) 对盐分梯度具有可塑性并具有显著的基株间差异;而其它形态指标 (如平均节间长、比节间长和比叶柄长)  相似文献   

15.
Serpentine soils limit plant growth by NPK deficiencies, low Ca availability, excess Mg, and high heavy metal levels. In this study, three congeneric serpentine and nonserpentine evergreen shrub species pairs were grown in metalliferous serpentine soil with or without NPKCa fertilizer to test which soil factors most limit biomass production and mineral nutrition responses. Fertilization increased biomass production and allocation to leaves while decreasing allocation to roots in both serpentine and nonserpentine species. Simultaneous increases in biomass and leaf N:P ratios in fertilized plants of all six species suggest that N is more limiting than P in this serpentine soil. Neither N nor P concentrations, however, nor root to shoot translocation of these nutrients, differed significantly between serpentine and nonserpentine congeners. All six species growing in unfertilized serpentine soil translocated proportionately more P to leaves compared to fertilized plants, thus maintaining foliar P. Leaf Ca:Mg molar ratios of the nonserpentine species were generally equal to that of the soil. The serpentine species, however, maintained significantly higher leaf Ca:Mg than both their nonserpentine counterparts and the soil. Elevated leaf Ca:Mg in the serpentine species was achieved by selective Ca transport and/or Mg exclusion operating at the root-to-shoot translocation level, as root Ca and Mg concentrations did not differ between serpentine and nonserpentine congeners. All six species avoided shoot toxicity of heavy metals by root sequestration. The comparative data on nutrient deficiencies, leaf Ca:Mg, and heavy metal sequestration suggest that the ability to maintain high leaf Ca:Mg is a key evolutionary change needed for survival on serpentine soil and represents the physiological feature distinguishing the serpentine shrub species from their nonserpentine congeners. The results also suggest that high leaf Ca:Mg is achieved in these serpentine species by selective translocation of Ca and/or inhibited transport of Mg from roots, rather than by uptake/exclusion at root surfaces.  相似文献   

16.
Soil compaction leads to changes in soil physical properties such as density, penetration resistance and porosity, and, by consequence, affects root and plant growth. The initial growth of Brazilian pine is considered as being more affected by soil physical than chemical conditions, and the presence of a well-developed tap root system has been associated with this fact. A greenhouse experiment was conducted in order to evaluate the impact of soil compaction on the growth of Brazilian pine seedlings and on their susceptibility to a simulated drought period. In the first phase of the experiment, the effects of three levels of soil compaction on root morphology and plant growth were examined. Soil cylinders were artificially compacted in PVC tubes. Pre-germinated seeds were planted, and 147 days later 10 plants from each treatment were harvested for analysis. Higher values of soil density were associated with a shorter and thicker tap root. Growth of lateral roots and shoots remained unaffected at this stage. In the second phase, half of the plants (12) in each compaction treatment were drought-stressed by withholding water for a period of 77 days. Increased soil compaction again resulted in reduced length and increased diameter of the main tap root. This time, the effects were also extended to the lateral roots. Shoot extension growth and overall plant mass, however, increased with soil compaction. This greater mass accumulation in plants growing under increased soil compaction may be attributed to a more intimate contact between roots and soil particles. Drought stress reduced both root and shoot growth, but root mass was more negatively affected by drought stress in plants growing under high levels of soil compaction. Future investigations on the effects of soil compaction on the initial growth of Brazilian pine should include a wider range of compaction levels to better establish the relationship between soil physical parameters and plant growth.  相似文献   

17.
In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR/PETROBRÁS) in Paraná, Brazil. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of Mimosa pilulifera seedlings. The experiment consisted of three treatments: petroleum-contaminated soil, bioremediated soil and uncontaminated soil, with five repetitions each. The following measurements were taken after 30, 60 and 90 days of planting: the percentage of germination, biomass and leaf area of the eophylls, biomass and length of the shoot and the roots in addition to the shoot/root ratio. The percentage of germination and the root biomass were not affected by the contaminated soil or by the bioremediated soil. On both the contaminated soil and the bioremediated soil biomass and leaf area of the eophyll were reduced. Plant length and shoot biomass were lower in the contaminated soil. Furthermore, the effect of the contaminated soil and the bioremediated soil was greater in the shoot than in the root system, since the bioremediation reduced the toxicity of the petroleum-contaminated soil.  相似文献   

18.
Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature.Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques.Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production.Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs.  相似文献   

19.
American elm (Ulmus americana) seedlings were either non-inoculated or inoculated with Hebeloma crustuliniforme, Laccaria bicolor and a mixture of the two fungi to study the effects of ectomycorrhizal associations on seedling responses to soil compaction and salinity. The seedlings were grown in the greenhouse in pots containing non-compacted (0.4 g cm?3 bulk density) and compacted (0.6 g cm?3 bulk density) soil and subjected to 60 mM NaCl or 0 mM NaCl (control) treatments for 3 weeks. All three fungal inocula had similar effects on the responses of elm seedlings to soil compaction and salt treatment. In non-compacted soil, ectomycorrhizal fungi reduced plant dry weights, root hydraulic conductance, but did not affect leaf hydraulic conductance and net photosynthesis. When treated with 60 mM NaCl, ectomycorrhizal seedlings had several-fold lower leaf concentrations of Na+ compared with the non-inoculated plants. Soil compaction reduced Na+ leaf concentrations in non-ectomycorrhizal plants and decreased dry weights, gas exchange and root hydraulic conductance. However, in ectomycorrhizal plants, soil compaction had little effect on the leaf Na+ concentrations and on other measured growth and physiological parameters. Our results demonstrated that ECM associations could be highly beneficial to plants growing in sites with compacted soil such as urban areas.  相似文献   

20.
The physiological reasons associated with differential sensitivity of C3 and C4 plant species to soil compaction stress are not well explained and understood. The responses of growth characteristics, changes in leaf water potential and gas exchange in maize and triticale to a different soil compaction were investigated. In the present study seedlings of triticale and maize, representative of C3 and C4 plants were subjected to low (L – 1.10 g cm−3), moderate (M – 1.34 g cm−3) and severe (S – 1.58 g cm−3) soil compaction level. Distinct differences in distribution of roots in the soil profile were observed. Plants of treatments M or S in comparison to treatment L, showed a decrease in leaf number, dry mass of stem, leaves and roots, and an increase in the shoot to root ratio. A drastic decrease in root biomass in M and S treatments in the soil profile on depth from 15 to 40 cm was observed. Any level of soil compaction did not influence the number of seminal and seminal-adventitious roots but decreased their length. The number and total length of nodal roots decreased with compaction. Changes of growth traits in M and S treatments in comparison to the L were greater for maize than for triticale and were accompanied by daily changes in water potential (ψ) and gas exchange parameters (PN, E, gs). Differences between M and S treatments in daily changes in ψ for maize were in most cases statistically insignificant, whereas for triticale, they were statistically significant. Differences in the responses of maize and triticale to soil compaction were found in PN, E and gs in particular for the measurements taken at 12:00 and 16:00. The highest correlation coefficients were obtained for the relationship between leaf water potential and stomatal conductance, both for maize and triticale, which indicates the close association between stomata behavior and changes in leaf water status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号