首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

2.
Abnormalities in blood cell membrane phospholipid composition and metabolism from schizophrenic patients have been reported by many groups of investigators. Among membrane phospholipids, inositol phospholipids are of special importance as they are involved in transduction system that generates second messengers such as inositol trisphosphate and diacylglycerol. Our studies on platelet inositol phospholipid turnover suggest a significant increase in platelet phosphatidylinositol 4,5-bisphosphate levels, an increased production of inositol trisphosphate in neuroleptic-treated and neuroleptic-free schizophrenic patients platelets and a reduced calcium release by thrombin in neuroleptic-treated schizophrenic patients platelets. The enhanced production of inositol trisphosphate may be due to an increase in its precursor phosphatidylinositol 4,5-bisphosphate with an associated desensitisation of the intracellular inositol trisphosphate receptor by neuroleptics, which may explain the diminished calcium response to thrombin in schizophrenic patients platelets.  相似文献   

3.
Using permeabilized chromaffin cells and the fluorescent probe Quin 2 (an indicator of free Ca2+), we found that inositol trisphosphate (IP3) specifically triggered an immediate and dose-dependent release of Ca2+ from intracellular stores. Desensitization of the response was observed at nonsaturating concentrations of inositol trisphosphate and resequestration of Ca2+ was not observed. While representing only a small fraction of the total cellular Ca2+, the amount released by IP3 could significantly raise cytosolic Ca2+ and may account for muscarinic effects on Ca2+ metabolism in chromaffin cells.  相似文献   

4.
Inositol trisphosphate, when added to permeabilized rat fat cells, led to a several-fold increase of pyruvate dehydrogenase activity due to conversion of the inactive phospho form (PDHb) to the active, dephospho form (PDHa). It is suggested that inositol trisphosphate, probably through intracellular Ca2+-mobilisation, acts as a physiological mediator of insulin for activation of the mitochondrial PDH-complex.  相似文献   

5.
Histamine, bradykinin, and angiotensin II stimulate release of catecholamines from adrenal medulla. Here we show, using bovine adrenal chromaffin cells in culture, that these agonists as well as carbachol (with hexamethonium) stimulate production of inositol phosphates. The histamine response was mepyramine sensitive, implicating an H1 receptor, whereas bradykinin had a lower EC50 than Met-Lys-bradykinin, and [Des-Arg9]-bradykinin was relatively inactive, implicating a BK-2 receptor. Total inositol phosphates formed in the presence of lithium were measured, with histamine giving the largest response. The relative contribution of chromaffin cells and nonchromaffin cells in the responses was assessed. In each case chromaffin cells were found to be responding to the agonists; in the case of histamine the response was solely on chromaffin cells. When the inositol phosphates accumulating over 2 or 5 min, with no lithium present, were separated on Dowex anion-exchange columns, bradykinin gave the greatest stimulation in the inositol trisphosphate fraction, whereas histamine gave a larger inositol monophosphate accumulation. On resolution of the isomers of stimulated inositol trisphosphate after 2 min of stimulation, the principal isomer present was inositol 1,3,4-trisphosphate in each case. Two hypotheses for the differential responses to histamine and bradykinin are discussed.  相似文献   

6.
Analysis of inositol bisphosphates in GH4 cells labelled with [3H]myo-inositol shows that these cells contain three detectable inositol bisphosphates: inositol(1,4)bisphosphate, and two novel inositol bisphosphates. These latter inositol bisphosphates were degraded by periodate oxidation, borohydride reduction and alkaline phosphatase dephosphorylation; each yielded single non-cyclic alditols, ribitol and threitol, indicating that they must be respectively inositol(1,3)bisphosphate and inositol(3,4) bisphosphate. These two inositol bisphosphates are putative breakdown products of inositol(1,3,4)trisphosphate, and their occurrence suggests a complex route of hydrolysis of inositol(1,3,4)trisphosphate in intact cells.  相似文献   

7.
Crude mitochondrial fractions containing a substantial amount of microsomes accumulate Ca2+ in the presence of ATP, ruthenium red and oligomycin. A proportion of this accumulated Ca2+ is released by the addition of low concentrations (ca. 1 microM) of inositol (1,4,5) trisphosphate . Under some conditions the release is transient, and evidence is presented which suggests that this is due to inhomogeneity in the vesicle population. (1,4,5)inositol trisphosphate -induced Ca2+ release can also be demonstrated, under appropriate experimental conditions, in a more purified microsomal fraction essentially free of mitochondria.  相似文献   

8.
Abstract: Chlorpromazine, a cationic amphiphilic drug known to affect phospholipid metabolism, greatly increases the generation of inositol phosphates in C6 glioma cells. When a pulse-chase protocol with myo-[2-3H]inositol as the radioactive precursor was used, the peak increase in radioactivity of inositol phosphates was observed at 20 min. The drug decreased inositol tetrakisphosphate labeling as a percentage of inositol trisphosphate in a dose-dependent manner. It also increased the labeling of the inositol-containing phospholipids, the precursors of the inositol phosphates. The increase in radioactivity of both phospholipids and inositol phosphates was dose-dependent, but appeared also to be a function of the time of exposure of the cultures to the drug, suggesting that the concentration of chlorpromazine in the cell, and not that in the medium, is the critical factor. The optimum concentration for maximum phospholipid labeling was lower than that eliciting maximum generation of inositol phosphates. The data suggest that the mechanism probably does not involve cell-surface receptors, but rather may consist of a direct effect of chlorpromazine on phosphoinositidase C and possibly other enzymatic reactions concerned with the metabolism of inositol phosphates.  相似文献   

9.
Inositol trisphosphates in carbachol-stimulated rat parotid glands.   总被引:51,自引:31,他引:20       下载免费PDF全文
Carbachol stimulation of rat parotid gland fragments prelabelled with myo-[3H]-inositol results in a large accumulation after 15 min of [3H]inositol trisphosphate. Only some of this is the D-1,4,5 isomer which would be expected to be derived from the known phosphatidylinositol bisphosphate. The predominant inositol trisphosphate is not susceptible to hydrolysis by human erythrocyte membranes. It yields altritol after periodate treatment followed by reduction and dephosphorylation, and, from partial dephosphorylation experiments, does not have a phosphate in the 2 position; the most likely structure of this inositol trisphosphate is therefore (D/L)-myo-inositol 1,3,4-trisphosphate. The possible origin and significance of this compound are discussed.  相似文献   

10.
The kinetics of polyphosphoinositide breakdown and inositol phosphate formation have been studied in rat cortical synaptosomes labelled in vitro with myo-[2-3H]inositol. Intrasynaptosomal Ca2+ concentrations have been varied by the use of Ca-EGTA buffers or by adding the ionophore A23187 in the presence and absence of 1 mM Ca2+. The former studies have revealed that, at very low (20 nM) intrasynaptosomal free Ca2+ levels, inositol bisphosphate, but not inositol monophosphate levels are reduced. Addition of A23187 in the absence of added Ca2+ gives rise to greatly enhanced inositol bisphosphate accumulation, which is further enhanced if 1 mM Ca2+ is present in the extrasynaptosomal medium. At all time points examined (down to 2 s after adding ionophore), the ratio of inositol trisphosphate/inositol bisphosphate accumulation does not exceed 0.2, and calculations based on inositol bis- and trisphosphate breakdown rates in synaptosomal lysates suggest that only a minority of the inositol bisphosphate arises from degradation of inositol trisphosphate. Addition of ionophore in the presence (but not in the absence) of 1 mM Ca2+ leads to rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and ATP and slower breakdown of phosphatidylinositol 4-phosphate (PtdInsP). The rates of loss of PtdinsP2 and ATP are very highly correlated, suggesting that polyphosphoinositide resynthesis may be limited by ATP availability at high Ca2+ levels. Analysis of 32P-labelled synaptosomes also reveals that A23187 produces Ca2+-dependent losses of PtdInsP2, PtdInsP, ATP, and GTP radioactivity and a marked increase in the radioactivity of a compound distinct from nucleotides or any of the lipid breakdown products tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: The uptake of myo -[3H]inositol into neurones from Lymnaea stagnalis has been demonstrated to be a sodium-dependent process, saturable with a K m of approximately 50 μ M and shown to be linear with time for at least 120 min. The rate of transport of myo -inositol into the cell appears to influence directly its incorporation into neuronal lipids. Using anion-exchange high-performance liquid chromatography, we have demonstrated a high rate of breakdown of phosphatidylinositol 4,5–bisphosphate in Lymnaea nerve under basal conditions. Stimulation with carbamylcholine enhanced production of inositol 1–phosphate, inositol bisphosphate, inositol 1,4,5–trisphosphate, and inositol 1,3,4–trisphosphate. Formation of inositol tetrakisphosphate was not detected. Electrical stimulation also caused an increased formation of inositol phosphates. These results provide evidence for an active myo -inositol transport system in molluscan neurones and suggest that the hydrolysis of inositol lipids may play a role as an intracellular signalling system in this tissue.  相似文献   

12.
The accumulation of labelled inositol mono-, bis-, and trisphosphate in rat cerebral cortex slices was examined following preincubation with [3H]inositol. The muscarinic receptor agonist carbachol produced a rapid and sustained increased accumulation of each labelled inositol phosphate both in the presence and absence of 5 mM lithium. Lithium potentiated carbachol-stimulated accumulation of inositol monophosphate (EC50 0.5 mM) and inositol bisphosphate (EC50 4 mM) in a concentration-dependent manner. However, exposure to lithium in the presence of the muscarinic agonist produced a concentration- and time-dependent inhibition of inositol trisphosphate accumulation that was not related to receptor desensitisation. Although the present data do suggest that polyphosphoinositides are substrates for agonist-stimulated phospholipase C in brain, these results may not be entirely consistent with the production of inositol mono- and bisphosphate through inositol trisphosphate dephosphorylation. Furthermore, these data suggest site(s) additional to inositol monophosphatase that are affected by lithium.  相似文献   

13.
Inositol phosphates: proliferation, metabolism and function   总被引:21,自引:0,他引:21  
After the initial discovery of receptor-linked generation of inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) it was generally assumed that Ins(1,4,5)P3 and its proposed breakdown products inositol(1,4)bisphosphate (Ins(1,4)P2) and Ins1P, along with cyclic inositol monophosphate, were the only inositol phosphates found in significant amounts in animal cells. Since then, three levels of complexity have been introduced. Firstly, Ins(1,4,5)P3 can be phosphorylated to Ins(1,3,4,5)P4, and the subsequent metabolism of these two compounds has been found to be intricate and probably different between various tissues. The functions of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 are almost certainly to regulate cytosolic Ca2+ concentrations, but the reasons for the labyrinth of the metabolic pathways after their deactivation by a specific 5-phosphatase remain obscure. Secondly, inositol pentakis- and hexakisphosphates have been found in many animal cells other than avian erythrocytes. It has been shown that their synthesis pathway is entirely separate from the inositol phosphates discussed above, both in terms of many of the isomers involved and probably in the subcellular localization; some possible functions of InsP5 and InsP6 are discussed here. Thirdly, cyclic inositol polyphosphates have been reported in stimulated tissues; the evidence for their occurrence in vivo and their possible physiological significance are also discussed.  相似文献   

14.
Activation of muscarinic receptors in rat parotid cells results in breakdown of polyphosphoinositides liberating inositol phosphates, including inositol trisphosphate. Formation of inositol trisphosphate appears independent of agonist-induced Ca2+ mobilization, since neither formation nor degradation of inositol trisphosphate are appreciably altered in low-calcium media, and elevation of cytosolic Ca2+ with a calcium ionophore does not cause an increase in cellular inositol trisphosphate. Further, activation of substance P receptors and alpha 1-adrenoreceptors, but not beta-adrenoreceptors, increases inositol trisphosphate formation. The dose-response curve for methacholine activation of inositol trisphosphate formation more closely approximates the curve for receptor occupancy than for Ca2+-activated K+ release. These results are all consistent with the suggestion that inositol trisphosphate could function as a second messenger linking receptor occupation to cellular Ca2+ mobilization.  相似文献   

15.
On addition of inositol trisphosphate, intact vacuoles isolated from Acer pseudoplatanus cell suspension cultures release part of their calcium content. The process was specific, dose-dependent (IC50 = 0.2μM) and was inhibited by an intracellular calcium antagonist. The calcium efflux elicited by inositol trisphosphate increased with the age of the cell suspension cultures, the maximum effect being obtained when the cultures reached the stationary phase. It is suggested that vacuoles play a role as an endocellular calcium store that is responsive to inositol trisphosphate in plants.  相似文献   

16.
It is generally believed that the activation of various cell surface receptors results in the phospholipase C-catalyzed production of inositol trisphosphate which, in turn, increases the intracellular concentration of free Ca2+ by stimulating its release from nonmitochondrial sources. We have investigated both the production of inositol trisphosphate and changes in intracellular Ca2+ concentration in rat pancreatic acini in response to caerulein and CCK-JMV-180, two analogs of cholecystokinin. Both of these analogs cause comparable increases in the rate of amylase secretion and in intracellular Ca2+ concentration but their effects on inositol phosphate generation are dramatically different; caerulein stimulates significant production of inositol phosphates within 1 min of its addition, whereas no detectable levels of inositol phosphates were generated within the same time after addition of CCK-JMV-180. These results suggest that the CCK-JMV-180 stimulated release of intracellular Ca2+ is not mediated by inositol trisphosphate but some other as yet unidentified messenger.  相似文献   

17.
The role of inositol trisphosphate as a chemical messenger in excitation-contraction coupling is discussed, both in terms of positive and negative results. The evidence presented includes experiments on the effect of inositol trisphosphate in intact and skinned fibers, in calcium release from isolated sarcoplasmic reticulum vesicles, in activation of single calcium release channels incorporated in planar bilayers, and biochemical experiments that have established the presence of all the intermediate steps involved in the metabolism of phosphoinositides, both in intact muscle and in isolated membranes. From these results, it is clear that a role for inositol triphosphate in skeletal muscle function is highly likely; whether this molecule is the physiological messenger in excitation-contraction coupling remains to be established.  相似文献   

18.
Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells   总被引:1,自引:0,他引:1  
Bradykinin produces increases in cytosolic calcium in MDCK cells. We have extracted and separated Inositol 1,4,5 trisphosphate by HPLC and after-acid hydrolysis and conversion to the hexatrifluoro-acetyl derivative quantitated by negative ion chemical ionization mass spectrometry the mass of inositol trisphosphate in MDCK cells. Bradykinin causes an increase in the mass of Inositol trisphosphate from basal levels of 152 pmoles/mg cell protein to 537 pmoles/mg cell protein by 10 secs of stimulation. We conclude that bradykinin stimulates PLC hydrolysis of PIP2 with rapid release of IP3 in sufficient amount to account for the increase in cytosolic Ca++.  相似文献   

19.
Abstract: Recent in vivo microdialysis studies have demonstrated the presence of extracellular levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] that can be increased in a concentration-dependent manner by muscarinic receptor activation. The aim of the present study was to determine whether extracellular levels of Ins(1,4,5)P3 could be measured in vitro. Despite rapid increases in internal Ins(1,4,5)P3 levels after stimulation with 1 m M carbachol, there was no change in external levels in both rat brain cortical slices and human neuroblastoma SH-SY5Y cells. Suprafusion of myo -[3H]inositol-prelabelled hippocampal slices with 1 m M carbachol caused an increase in 3H-inositol phosphates over basal levels in the perfusate after 10 min, reaching a peak (223 ± 56% of basal) 20 min after suprafusion with carbachol was started. This response to carbachol was potentiated in the presence of 30 m M K+. Analysis of the individual 3H-inositol phosphates in the perfusate revealed that levels of [3H]inositol monophosphate, [3H]inositol bisphosphate, [3H]inositol trisphosphate, and [3H]inositol tetrakisphosphate were all significantly increased. A similar increase in extracellular 3H-inositol phosphates was demonstrated in SH-SY5Y cells incubated with 1 m M carbachol for 30 min. This response was again enhanced by 30 m M K+, although the intracellular response was not potentiated. Possible roles for extracellular inositol phosphates are discussed.  相似文献   

20.
D L Aub  J W Putney 《Life sciences》1984,34(14):1347-1355
Rat parotid acinar cells were used to investigate the time course of formation and breakdown of inositol phosphates in response to receptor-active agents. In cells preincubated with [3H]inositol and in the presence of 10 mM LiCl (which blocks hydrolysis of inositol phosphate), methacholine (10(-4)M) caused a substantial increase in cellular content of [3H]inositol phosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. Subsequent addition of atropine (10(-4) M) caused breakdown of [3H]inositol trisphosphate and [3H]inositol bisphosphate and little change in accumulated [3H]inositol phosphate. The data could be fit to a model whereby inositol trisphosphate and inositol bisphosphate are formed from phosphodiesteratic breakdown of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate respectively, and inositol phosphate is formed from hydrolysis of inositol bisphosphate rather than from phosphatidyl-inositol. Consistent with this model was the finding that [3H]inositol trisphosphate and [3H]inositol bisphosphate levels were substantially increased in 5 sec while an increase in [3H]inositol phosphate was barely detectable at 60 sec. These results indicate that in the parotid gland the phosphoinositide cycle is activated primarily by phosphodiesteratic breakdown of the polyphosphoinositides rather than phosphatidyl-inositol. Also, the results show that formation of inositol trisphosphate is probably sufficiently rapid for it to act as a second messenger signalling internal Ca2+ release in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号