首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Regulation of phosphate homeostasis by MicroRNA in Arabidopsis   总被引:31,自引:0,他引:31       下载免费PDF全文
Chiou TJ  Aung K  Lin SI  Wu CC  Chiang SF  Su CL 《The Plant cell》2006,18(2):412-421
  相似文献   

2.
This paper examines the control of phosphate uptake into Chara corallina. Influxes of inorganic phosphate (Pi) into isolated single internodal cells were measured with 32Pi. Pretreatment of cells without Pi for up to 10 d increased Pi influx. However, during this starvation the concentrations of Pi in both the cytoplasm and the vacuole remained quite constant. When cells were pre-treated with 0.1 mM Pi, the subsequent influx of Pi was low. Under these conditions the Pi concentrations in the cytoplasm was almost the same as that of Pi-starved cells, but vacuolar Pi increased with time. Transfer of cells from medium containing 0.1 mM Pi to Pi-free medium induced an increase of Pi influx within 3 d irrespective of the concentration of Pi in the vacuole.During Pi starvation, neither the membrane potential nor the cytoplasmic pH changed. Manipulation of the cytoplasmic pH by weak acids or ammonium decreased the Pi influx slightly.Pi efflux was also measured, using cells loaded with 32Pi. Addition of a low concentration of Pi in the rinsing medium rapidly and temporarily induced an increase in the efflux.The results show that Pi influx is controlled by factors other than simple feedback from cytoplasmic or vacuolar Pi concentrations or thermodynamic driving forces for H+-coupled Pi uptake. It is suggested that uptake of Pi is controlled via the concentration of Pi in the external medium through induction or repression of two types of plasma membrane Pi transporters.Key words: Chara corallina, membrane transport, phosphate influx, phosphate starvation   相似文献   

3.
The increase in the ratio of root growth to shoot growth that occurs in response to phosphate (Pi) deprivation is paralleled by a decrease in cytokinin levels under the same conditions. However, the role of cytokinin in the rescue system for Pi starvation remains largely unknown. We have isolated a gene from Arabidopsis thaliana (AtIPS1) that is induced by Pi starvation, and studied the effect of cytokinin on its expression in response to Pi deprivation. AtIPS1 belongs to the TPSI1/Mt4 family, the members of which are specifically induced by Pi starvation, and the RNAs of which contain only short, non-conserved open reading frames. Pi deprivation induces AtIPS1 expression in all cells of wild-type plants, whereas in the pho1 mutant grown on Pi-rich soils, AtIPS1 expression in the root was delimited by the endodermis. This supports the view that pho1 is impaired in xylem loading of Pi, and that long-distance signals controlling the Pi starvation responses act via negative control. Exogenous cytokinins repress the expression of AtIPS1 and other Pi starvation-responsive genes in response to Pi deprivation. However, cytokinins did not repress the increase in root-hair number and length induced by Pi starvation, a response dependent on local Pi concentration rather than on whole-plant Pi status. Our results raise the possibility that cytokinins may be involved in the negative modulation of long-distance, systemically controlled Pi starvation responses, which are dependent on whole-plant Pi status.  相似文献   

4.
This report describes Pi transport activity in chondrocytes isolated from the growth plate (GP) of normal adolescent chickens grown in primary cell culture. Our recent work showed that Pi transport in matrix vesicles (MV) isolated from normal GP cartilage was not strictly Na+-dependent, whereas previously characterized Pi transport from rachitic GP cartilage MV was. This Na+-dependent Pi transporter (NaPiT), a member of the Type III Glvr-1 gene family, is expressed only transiently during early differentiation of GP cartilage, is enhanced by Pi-deficiency, and is most active at pH 6.8. Since GP mineralization requires abundant Pi and occurs under slightly alkaline conditions, it seemed unlikely that this type of Pi transporter was solely responsible for Pi uptake during normal GP development. Therefore we asked whether the lack of strict Na+-dependency in Pi transport seen in normal MV was also evident in normal GP chondrocytes. In fact, cellular Pi transport was found not to be strictly Na+-dependent, except for a brief period early in the culture. Choline could equally serve as a Na+ substitute. Activity of choline-supported Pi transport was optimum at pH 7.6-8.0. In addition, prior exposure of the cells to elevated extracellular Pi (2-3 mM) strongly enhanced subsequent Pi uptake, which appeared to depend on prior loading of the cells with mineral ions. Prevention of Pi loading by pretreatment with Pi transport inhibitors not only inhibited subsequent cellular Pi uptake, it also blocked mineral formation. Treatment with elevated extracellular Pi did not induce apoptosis in these GP chondrocytes.  相似文献   

5.
ATP hydrolysis catalysed by the H+-ATPase of intact mitochondria can be induced by addition of ATP in the presence of valinomycin and KCl. This leads to an increase in intramitochondrial Pi and therefore allows investigation of potential Pi efflux pathways in intact mitochondria. Combining this approach with the direct measurement of both internal and external Pi, we have attempted to determine whether Pi efflux occurs via an atractyloside-sensitive transporter, by the classical operation of the Pi/H+ and Pi/dicarboxylate carriers, and/or by other mechanisms. Initial experiments re-examined the evidence that led to the current view that one efflux pathway for Pi is an atractyloside-sensitive ATP/ADP,0.5Pi transporter. No evidence was found in support of this efflux pathway. Rather, atractyloside-sensitivity of the low rate of Pi efflux observed in previous studies (oligomycin present) was accounted for by ATP entry on the well known ATP/ADP transport system followed by hydrolysis of ATP and subsequent Pi efflux. Thus, under these conditions, where ATP hydrolysis is not completely inhibited, Pi efflux becomes atractyloside sensitive most likely because this inhibitor blocks ATP entry, not because it directly inhibits Pi efflux. Substantial efflux of Pi from rat liver mitochondria is observed on generation of high levels of matrix Pi by ATP hydrolysis induced by valinomycin and K+ (oligomycin absent). A portion of this efflux can be inhibited by thiol-specific reagents at concentrations that normally inhibit the Pi/H+ and Pi/dicarboxylate carriers. However, a significant fraction of efflux continues even in the presence of p-chloromercuribenzoate, N-ethylmaleimide plus n-butylmalonate or mersalyl. The mersalyl-insensitive Pi efflux, which is also insensitive to carboxyatractyloside, is a saturable process, thus suggesting carrier mediation. During this efflux the mitochondrial inner membrane retains considerable impermeability to other low-molecular-weight anions (i.e., malate, 2-oxoglutarate). In conclusion, results presented here rule out an atractyloside-sensitive ATP/ADP,0.5Pi transport system as a mechanism for Pi efflux in rat liver mitochondria. Rather Pi efflux appears to occur on the classical Pi/H+ transport system as well as via a mersalyl-insensitive saturable process. The inhibitor-insensitive Pi efflux may occur on a portion of the Pi/H+ carrier molecules that exist in a state different from that normally catalysing Pi influx. Alternatively, a separate Pi efflux carrier may exist.  相似文献   

6.
Hamster 4-cell stage embryos were cultured in a protein-free, glucose-free medium to study the nature of developmental inhibition by inorganic phosphate (Pi). In the absence of Pi, between 40 and 55% of embryos were able to develop to the blastocyst stage but addition of Pi to the medium reduced this proportion to 5-20%. The inhibition did not appear to be due to contamination of the Pi salt with heavy metals because EDTA did not relieve the effect. Inhibition by Pi showed no dose-response relationship over the range tested (1-350 microM). In contrast, another divalent anion (sulphate) produced no inhibition of 4-cell embryo development at concentrations as high as 5.6 mM. Embryos were less sensitive to inhibition by Pi after the third cleavage division had occurred, and development of mid or late 8-cell embryos was unaffected by Pi. After exposure to Pi for 1 h, embryos could recover and continue development but longer exposure was detrimental to subsequent development. These results indicate that the inhibitory effect is specific to phosphate ions, is not due to contaminants in the Pi salt, is evoked by very low concentrations of Pi, is stage-specific, and is reversible following brief exposure of embryos to Pi. These effects may be artifacts of the culture milieu, or they may reflect some unknown characteristic of the early cleavage stage hamster embryo.  相似文献   

7.
Inorganic phosphate (Pi) is required for cellular function and skeletal mineralization. Serum Pi level is maintained within a narrow range through a complex interplay between intestinal absorption, exchange with intracellular and bone storage pools, and renal tubular reabsorption. Pi is abundant in the diet, and intestinal absorption of Pi is efficient and minimally regulated. The kidney is a major regulator of Pi homeostasis and can increase or decrease its Pi reabsorptive capacity to accommodate Pi need. The crucial regulated step in Pi homeostasis is the transport of Pi across the renal proximal tubule. Type II sodium-dependent phosphate (Na/Pi) cotransporter (NPT2) is the major molecule in the renal proximal tubule and is regulated by hormones and nonhormonal factors. Recent studies of inherited and acquired hypophosphatemia which exhibit similar biochemical and clinical features, have led to the identification of novel genes, phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and fibroblast growth factor-23 (FGF-23), that play a role in the regulation of Pi homeostasis. The PHEX gene encodes an endopeptidase, predominantly expressed in bone and teeth but not in kidney. FGF-23 may be a substrate of this endopeptidase and inhibit renal Pi reabsorption. In a survey in the United States and in Japan, the amount of phosphorus from food is gradually increasing. It is thought that excess amounts of phosphorus intake for long periods are a strong factor in bone impairment and ageing. The restriction of phosphorus intake seems to be important under low calcium intake to keep QOL on high level.  相似文献   

8.
Inorganic phosphate (Pi) homeostasis in multi-cellular eukaryotes depends not only on Pi influx into cells, but also on Pi efflux. Examples in plants for which Pi efflux is crucial are transfer of Pi into the xylem of roots and release of Pi at the peri-arbuscular interface of mycorrhizal roots. Despite its importance, no protein has been identified that specifically mediates phosphate efflux either in animals or plants. The Arabidopsis thaliana PHO1 gene is expressed in roots, and was previously shown to be involved in long-distance transfer of Pi from the root to the shoot. Here we show that PHO1 over-expression in the shoot of A. thaliana led to a two- to threefold increase in shoot Pi content and a severe reduction in shoot growth. (31) P-NMR in vivo showed a normal initial distribution of intracellular Pi between the cytoplasm and the vacuole in leaves over-expressing PHO1, followed by a large efflux of Pi into the infiltration medium, leading to a rapid reduction of the vacuolar Pi pool. Furthermore, the Pi concentration in leaf xylem exudates from intact plants was more than 100-fold higher in PHO1 over-expressing plants compared to wild-type. Together, these results show that PHO1 over-expression in leaves leads to a dramatic efflux of Pi out of cells and into the xylem vessel, revealing a crucial role for PHO1 in Pi efflux.  相似文献   

9.
Addition of dimethyl sulfoxide promotes the formation of enzyme-bound ATP from medium Pi by mitochondrial F1 adenosinetriphosphatase that has tightly bound ADP present. Measurements are reported of medium Pi in equilibrium H18OH exchange and of the dependence of formation of enzyme-bound ATP on Pi concentration. Attainment of an apparent equilibrium between medium Pi and bound ATP requires longer than 30 min, even though the rates of Pi binding and release after apparent equilibrium is reached would suffice for a faster approach to equilibrium. Slow protein conformational changes or other unknown modulating factors may be responsible for the slow rate of bound ATP formation. After apparent equilibrium is reached, each Pi that binds to the enzyme reversibly forms ATP about 50 times before being released to the medium. The rate of interconversion of bound ATP to bound ADP and Pi is much slower than that in the absence of dimethyl sulfoxide as measured with sufficiently low ATP concentrations so that single-site catalysis is favored. Although the interconversion rate is slowed, the equilibrium constant for bound ATP formation from bound ADP and Pi is not far from unity. Dimethyl sulfoxide favors the formation of enzyme-bound ATP by promoting the competent binding of Pi to enzyme with ADP bound at a catalytic site rather than by promoting formation of bound ATP from bound ADP and Pi.  相似文献   

10.
31P NMR studies of spinach leaves and their chloroplasts   总被引:3,自引:0,他引:3  
An experimental arrangement is described which enables high quality 31P NMR spectra of compressed spinach leaf pieces to be continuously recorded in which all the resonances observed (cytoplasmic and vacuolar Pi, glycerate-3-P, nucleotides) were sharp and well resolved. 31P NMR spectra obtained from intact chloroplasts showed a distinct peak of stromal Pi. An upfield shift of the stromal Pi resonance was associated with a decrease in the external Pi and vice versa. Nucleotides were largely invisible to NMR in intact chloroplasts, whereas the same nucleotides reappeared in a typical 31P NMR spectrum of an acid extract of intact chloroplasts. Perfusion of compressed spinach leaf pieces with a medium containing Pi triggered a dramatic increase in the vacuolar Pi over 12 h. Addition of choline to the Pi-free perfusate of compressed leaf pieces resulted in a steady accumulation of phosphorylcholine in the cytoplasmic compartment at the expense of cytoplasmic Pi. When a threshold of cytoplasmic Pi concentration was attained, Pi was drawn from the vacuole to sustain choline phosphorylation. In spinach leaves, the vacuole represents a potentially large Pi reservoir, and cycling of Pi through vacuolar influx (energy dependent) and efflux pathways is an efficient system that may provide for control over the cytosolic-free Pi and phosphorylated intermediate concentrations. 31P NMR spectra of neutralized perchloric acid extracts of spinach leaves showed well defined multipeak resonances (quadruplet) of intracellular phytate. The question of cytosolic Pi concentration in green cells is discussed.  相似文献   

11.
Hua Z  Kao TH 《The Plant cell》2006,18(10):2531-2553
Petunia inflata S-locus F-box (Pi SLF) is thought to function as a typical F-box protein in ubiquitin-mediated protein degradation and, along with Skp1, Cullin-1, and Rbx1, could compose an SCF complex mediating the degradation of nonself S-RNase but not self S-RNase. We isolated three P. inflata Skp1s (Pi SK1, -2, and -3), two Cullin-1s (Pi CUL1-C and -G), and an Rbx1 (Pi RBX1) cDNAs and found that Pi CUL1-G did not interact with Pi RBX1 and that none of the three Pi SKs interacted with Pi SLF2. We also isolated a RING-HC protein, S-RNase Binding Protein1 (Pi SBP1), almost identical to Petunia hybrida SBP1, which interacts with Pi SLFs, S-RNases, Pi CUL1-G, and an E2 ubiquitin-conjugating enzyme, suggesting that Pi CUL1-G, SBP1, and SLF may be components of a novel E3 ligase complex, with Pi SBP1 playing the roles of Skp1 and Rbx1. S-RNases interact more with nonself Pi SLFs than with self Pi SLFs, and Pi SLFs also interact more with nonself S-RNases than with self S-RNases. Bacterially expressed S1-, S2-, and S3-RNases are degraded by the 26S proteasomal pathway in a cell-free system, albeit not in an S-allele–specific manner. Native glycosylated S3-RNase is not degraded to any significant extent; however, deglycosylated S3-RNase is degraded as efficiently as the bacterially expressed S-RNases. Finally, S-RNases are ubiquitinated in pollen tube extracts, but whether this is mediated by the Pi SLF–containing E3 complex is unknown.  相似文献   

12.
Characteristics of the exchange reactions catalyzed by beef heart submitochondrial particles give new insight into energy transducing steps of oxidative phosphorylation. The uncoupler-insensitive portion of the total Pi in equilibrium HOH exchange in presence of ATP, ADP, and Pi is the intermediate Pi in equilibrium HOH exchange, that is the exchange occurring with Pi formed by hydrolysis of ATP prior to release of Pi from the catalytic site. The exchange of medium Pi with HOH is as sensitive to uncouplers as the Pi in equilibrium ATP exchange and net oxidative phosphorylation, demonstrating a requirement of an uncoupler-sensitive energized state, probably a transmembrane potential or proton gradient, for bringing medium Pi to the reactive state. The covalent bond forming and breaking step at the catalytic site (ADP + Pi in equilibrium ATP + HOH) appears relatively insensitive to uncouplers. Thus to the extent that uncouplers dissipate transmembrane proton-motive force, it is unlikely that such a force is used to drive ATP formation by direct protonations of Pi oxygens. When only Pi and ADP are added and formation of ATP from added ADP by adenylate kinase and subsequent ATP hydrolysis are adequately blocked, no Pi in equilibrium HOH exchange can be observed, demonstrating a requirement of energization by ATP binding and cleavage for such an exchange. This uncoupler-insensitive energization is suggested to represent a conformationally energized state that can be used reversibly to develop a transmembrane protonmotive force accompanying ADP and Pi release. Rates of various exchanges as estimated by improved procedures are compatible with all oxygen exchanges occurring by dynamic reversal of ATP hydrolysis at the catalytic site.  相似文献   

13.
Sarcoplasmic reticulum vesicles rendered leaky by exposure to alkaline pH, like intact vesicles, catalyze a rapid Mg2+-dependent exchange of oxygens of medium Pi with water. The exchange with 10 mM Pi is strongly inhibited by 0.15 mM Ca2+. Upon addition and hydrolysis of ITP or ATP, a rapid phosphate-oxygen exchange is observed even with 0.15 mM Ca2+ present and a definite but smaller exchange at 8 mM Ca2+. Oxygen exchange per Pi formed is greater with ITP than with ATP. When no Pi is initially present, the extent of oxygen exchange is increased with time of incubation as Pi is formed. With 18O-labeled Pi present, ATP hydrolysis accelerates 18O loss. The results show that much of the oxygen exchange occurs as a result of reversible binding of medium Pi. Thus the binding and cleavage of ITP or ATP overcomes the Ca2+ inhibition of the medium Pi in equilibrium HOH exchange. Such findings support the concept that the cleavage cycle includes a transient conformational form which can reversibly react with Pi to give a phosphoryl enzyme and resultant oxygen exchange or in a rate-limiting step decay to a form with high Ca2+ and NTP affinity.  相似文献   

14.
Hua Z  Meng X  Kao TH 《The Plant cell》2007,19(11):3593-3609
Petunia inflata possesses S-RNase-based self-incompatibility (SI), which prevents inbreeding and promotes outcrossing. Two polymorphic genes at the S-locus, S-RNase and P. inflata S-locus F-box (Pi SLF), determine the pistil and pollen specificity, respectively. To understand how the interactions between Pi SLF and S-RNase result in SI responses, we identified four Pi SLF-like (Pi SLFL) genes and used them, along with two previously identified Pi SLFLs, for comparative studies with Pi SLF(2). We examined the in vivo functions of three of these Pi SLFLs and found that none functions in SI. These three Pi SLFLs and two other Pi SLFs either failed to interact with S(3)-RNase (a non-self S-RNase for all of them) or interacted much more weakly than did Pi SLF(2) in vitro. We divided Pi SLF(2) into FD1 (for Functional Domain1), FD2, and FD3, each containing one of the Pi SLF-specific regions, and used truncated Pi SLF(2), chimeric proteins between Pi SLF(2) and one of the Pi SLFLs that did not interact with S(3)-RNase, and chimeric proteins between Pi SLF(1) and Pi SLF(2) to address the biochemical roles of these three domains. The results suggest that FD2, conserved among three allelic variants of Pi SLF, plays a major role in the strong interaction with S-RNase; additionally, FD1 and FD3 (each containing one of the two variable regions of Pi SLF) together negatively modulate this interaction, with a greater effect on interactions with self S-RNase than with non-self S-RNases. A model for how an allelic product of Pi SLF determines the fate of its self and non-self S-RNases in the pollen tube is presented.  相似文献   

15.
Lin F  Chen S  Que Z  Wang L  Liu X  Pan Q 《Genetics》2007,177(3):1871-1880
The resistance (R) gene Pi37, present in the rice cultivar St. No. 1, was isolated by an in silico map-based cloning procedure. The equivalent genetic region in Nipponbare contains four nucleotide binding site-leucine-rich repeat (NBS-LRR) type loci. These four candidates for Pi37 (Pi37-1, -2, -3, and -4) were amplified separately from St. No. 1 via long-range PCR, and cloned into a binary vector. Each construct was individually transformed into the highly blast susceptible cultivar Q1063. The subsequent complementation analysis revealed Pi37-3 to be the functional gene, while -1, -2, and -4 are probably pseudogenes. Pi37 encodes a 1290 peptide NBS-LRR product, and the presence of substitutions at two sites in the NBS region (V239A and I247M) is associated with the resistance phenotype. Semiquantitative expression analysis showed that in St. No. 1, Pi37 was constitutively expressed and only slightly induced by blast infection. Transient expression experiments indicated that the Pi37 product is restricted to the cytoplasm. Pi37-3 is thought to have evolved recently from -2, which in turn was derived from an ancestral -1 sequence. Pi37-4 is likely the most recently evolved member of the cluster and probably represents a duplication of -3. The four Pi37 paralogs are more closely related to maize rp1 than to any of the currently isolated rice blast R genes Pita, Pib, Pi9, Pi2, Piz-t, and Pi36.  相似文献   

16.
The Pi concentration of Acer pseudoplatanus cells in the two major intracellular compartments, the cytoplasm and the vacuole, has been studied using 31P NMR. For sycamore cells containing approximately 2 mM of total Pi, the cytoplasmic Pi and the vacuolar Pi concentrations were approximately 6 and 1.5 mM, respectively. When the cells were transferred to a phosphate-deficient medium, the vacuolar Pi decreased rapidly while the cytoplasmic Pi decreased slowly during the first 48 h, indicating that Pi in the cytoplasm was maintained at the expense of the vacuolar Pi. When the Pi-starved cells (i.e., those containing less than 0.5 mumol of total Pi/g wet wt) were transferred to a medium containing 300 microM Pi, Pi entered the cells rapidly and accumulated in the cytoplasm. Once the cytoplasmic Pi pool was filled, Pi was taken up in the vacuole until the vacuole Pi pool was filled. On the contrary when the non-Pi-starved cells were transferred to a phosphate-rich medium (i.e., containing 45 mM Pi), Pi entered the cells slowly by diffusion and accumulated in the vacuole but not in the cytoplasm. These results demonstrate that the Pi content of the cytoplasm is maintained at the expense of the vacuolar Pi pool when sycamore cells are transferred to either a phosphate-deficient or a phosphate-rich medium.  相似文献   

17.
18.
根际酸化是植物适应低磷胁迫的重要策略, 但植物是如何感知和转导低磷信号, 进而促进根际酸化的分子机制至今还不十分清楚。利用pH指示剂(溴甲酚紫)显色法从拟南芥(Arabidopsis thaliana) T-DNA插入突变体库中分离得到了1株低磷诱导根际酸化缺失突变体spl1。在含溴甲酚紫的低磷培养基上培养8小时, 野生型拟南芥根际培养基的颜色变为黄色, 而突变体spl1根际培养基的颜色没有明显变化, 表明spl1的低磷根际酸化反应能力降低。当低磷胁迫处理延长20天, spl1叶片的花青素积累明显高于野生型。同时也出现, 即使在磷营养正常条件下, spl1突变体也表现出根毛数量与长度增加的特征。进一步的研究表明, 在低磷条件下, spl1突变体根部的磷含量略高于野生型, 与磷转运相关基因的表达量明显高于野生型。分子遗传学分析结果表明, SPL1基因受低磷胁迫诱导, 主要在拟南芥的叶片和花等组织中表达, 其编码的蛋白广泛分布在细胞的各个部位。以上结果表明, SPL1参与介导低磷诱导的拟南芥根际酸化反应, 调节多种低磷胁迫反应及低磷条件下磷饥饿诱导基因的表达。  相似文献   

19.
Variation in the concentration of orthophosphate (Pi) in actively contracting, chemically skinned muscle fibers has proved to be a useful probe of actomyosin interaction. Previous studies have shown that isometric tension (Po) decreases linearly in the logarithm of [Pi] for [Pi] > or = 200 microM. This result can be explained in terms of cross-bridge models in which the release of Pi is involved in the transition from a weakly bound, low-force actin x myosin x ADP x Pi state to a strongly bound, high-force, actin x myosin x ADP state. The 200 microM minimum [Pi] examined results from an inability to buffer the intrafiber, diffusive buildup of Pi resulting from the fiber ATPase. In the present study, we overcome this limitation by employing the enzyme purine nucleoside phosphorylase with substrate 7-methylguanosine to reduce the calculated internal [Pi] in contracting rabbit psoas fibers to < 5 microM. At 10 degrees C we find that Po continues to increase as the [Pi] decreases for [Pi] > or = 100 microM. Below this [Pi], Po is approximately constant. These results indicate that the free energy drop in the cross-bridge powerstroke is approximately 9 kT. This value is shown to be consistent with observations of muscle efficiency at physiological temperatures.  相似文献   

20.
It was shown in previous studies that the giant freshwater alga Chara corallina does not control its Na+‐dependent Pi uptake by monitoring the internal Pi concentration and it was hypothesized that Chara may instead detect changes in Pi supply from the environment. The present work investigated the conditions that control the induction and inactivation of high affinity Na+/Pi influx in Chara. Withdrawal of Pi from the external medium resulted in a gradual increase in the rate of uptake measured immediately after Pi was resupplied. The increase continued for at least 7 d of starvation. In the initial stages, 0·5 or 1 µm Pi were more effective at inducing transport activity than no Pi, suggesting that low levels of Pi are actually required for induction. The high Na+‐dependent Pi uptake observed in Pi‐starved cells was inactivated by treatment with as little as 1 µm Pi over 6 d. External Na+ plays a major role in controlling the capacity for Na+/Pi cotransport activity, and in the absence of Na+, both induction and inactivation were either delayed or abolished. Na+ starvation stimulated Na+ uptake even though there were no measurable changes in the concentrations of Na+, or of K+ or Pi in either the vacuole or cytoplasm. It was concluded that both substrate (Pi) and driver ion (Na+) are required at adequate concentrations for the induction of the cotransporter. In the case of Pi, it was suggested that passive leakage of Pi from the cell into the apoplast is sufficient for this purpose but that supplementation by up to 1 µm Pi is more effective at the earlier stage. A mechanism for sensing the external supply of Pi is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号