首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Background

Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1). F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection.

Methods

Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA.

Results

Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA.

Conclusions

Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv antibodies.  相似文献   

2.
Li Y  Dai E  Cui Y  Li M  Zhang Y  Wu M  Zhou D  Guo Z  Dai X  Cui B  Qi Z  Wang Z  Wang H  Dong X  Song Z  Zhai J  Song Y  Yang R 《PloS one》2008,3(5):e2166

Background

DFR (different region) analysis has been developed for typing Yesinia pestis in our previous study, and in this study, we extended this method by using 23 DFRs to investigate 909 Chinese Y. pestis strains for validating DFR-based genotyping method and better understanding adaptive microevolution of Y. pestis.

Methodology/Principal Findings

On the basis of PCR and Bionumerics data analysis, 909 Y. pestis strains were genotyped into 32 genomovars according to their DFR profiles. New terms, Major genomovar and Minor genomovar, were coined for illustrating evolutionary relationship between Y. pestis strains from different plague foci and different hosts. In silico DFR profiling of the completed or draft genomes shed lights on the evolutionary scenario of Y. pestis from Y. pseudotuberculosis. Notably, several sequenced Y. pestis strains share the same DFR profiles with Chinese strains, providing data for revealing the global plague foci expansion.

Conclusions/significance

Distribution of Y. pestis genomovars is plague focus-specific. Microevolution of biovar Orientalis was deduced according to DFR profiles. DFR analysis turns to be an efficient and inexpensive method to portrait the genome plasticity of Y. pestis based on horizontal gene transfer (HGT). DFR analysis can also be used as a tool in comparative and evolutionary genomic research for other bacteria with similar genome plasticity.  相似文献   

3.
Yersinia pestis 201 contains 4 plasmids pPCP1, pMT1, pCD1 and pCRY, but little is known about the effects of these plasmids on the dissemination of Y. pestis. We developed a plasmid-based luxCDABE bioreporter in Y. pestis 201, Y. pestis 201-pCD1+, Y. pestis 201-pMT1+, Y. pestis 201-pPCP1+, Y. pestis 201-pCRY+, Y. pestis 201-p and Yersinia pseudotuberculosis Pa36060 strains, and investigated their dissemination by bioluminescence imaging during primary septicemic plague in a mouse model. These strains mainly colonized the livers and spleens shortly after intravenous inoculation. Y. pestis 201-pMT1+ appeared to have a stronger ability to survive in the livers, spleens and blood, and to be more virulent than other plasmid-deficient strains. Y. pestis 201-pPCP1+ appeared to have a stronger ability to colonize lungs than other plasmid-deficient strains. Pa36060 has the strongest ability to colonize intestines and lungs. Y. pestis 201 has the strongest ability to survive in blood, and the strongest virulence. These results indicated that the plasmid pMT1 was an important determinant in the colonization of livers, spleens and blood, whereas the plasmid pPCP1 appeared to correlate with the colonization in lungs. The resistance to killing in mouse blood seemed to be the critical factor causing animal death.  相似文献   

4.
It is postulated that unique nanoscale proteomic features of immunogen on vaccine particles may determine immunogen‐packing density, stability, specificity, and pH‐sensitivity on the vaccine particle surface and thus impact the vaccine‐elicited immune responses. To test this presumption, we employed near‐filed scanning optical microscopy (NSOM)‐ and atomic force microscopy (AFM)‐based nanotechnology to study nano‐structural and single‐molecule force bases of Yersinia pestis (Y. pestis) V immunogen fused with protein anchor (V‐PA) loaded on gram positive enhancer matrix (GEM) vaccine particles. Surprisingly, the single‐molecule sensitive NSOM revealed that ~90% of V‐PA immunogen molecules were packed as high‐density nanoclusters on GEM particle. AFM‐based single‐molecule force analyses indicated a highly stable and specific binding between V‐PA and GEM at the physiological pH. In contrast, this specific binding was mostly abrogated at the acidic pH equivalent to the biochemical pH in phagolysosomes of antigen‐presenting‐cells in which immunogen protein is processed for antigen presentation. Intranasal mucosal vaccination of mice with such immunogen loaded on vaccine particles elicited robust antigen‐specific immune response. This study indicated that high‐density, high‐stability, specific, and immunological pH‐responsive loading of immunogen nanoclusters on vaccine particles could readily be presented to the immune system for induction of strong antigen‐specific immune responses.  相似文献   

5.

Background

Variable number of tandem repeats (VNTRs) that are widely distributed in the genome of Yersinia pestis proved to be useful markers for the genotyping and source-tracing of this notorious pathogen. In this study, we probed into the features of VNTRs in the Y. pestis genome and developed a simple hierarchical genotyping system based on optimized VNTR loci.

Methodology/Principal Findings

Capillary electrophoresis was used in this study for multi-locus VNTR analysis (MLVA) in 956 Y. pestis strains. The general features and genetic diversities of 88 VNTR loci in Y. pestis were analyzed with BioNumerics, and a “14+12” loci-based hierarchical genotyping system, which is compatible with single nucleotide polymorphism-based phylogenic analysis, was established.

Conclusions/Significance

Appropriate selection of target loci reduces the impact of homoplasies caused by the rapid mutation rates of VNTR loci. The optimized “14+12” loci are highly discriminative in genotyping and source-tracing Y. pestis for molecular epidemiological or microbial forensic investigations with less time and lower cost. An MLVA genotyping datasets of representative strains will improve future research on the source-tracing and microevolution of Y. pestis.  相似文献   

6.

Background  

Yersinia pestis, the causative agent of plague, is a pathogen with a tremendous ability to cause harm and panic in populations. Due to the severity of plague and its potential for use as a bioweapon, better preventatives and therapeutics for plague are desirable. Subunit vaccines directed against the F1 capsular antigen and the V antigen (also known as LcrV) of Y. pestis are under development. However, these new vaccine formulations have some possible limitations. The F1 antigen is not required for full virulence of Y. pestis and LcrV has a demonstrated immunosuppressive effect. These limitations could damper the ability of F1/LcrV based vaccines to protect against F1-minus Y. pestis strains and could lead to a high rate of undesired side effects in vaccinated populations. For these reasons, the use of other antigens in a plague vaccine formulation may be advantageous.  相似文献   

7.
《Genomics》2021,113(4):1952-1961
BackgroundPlague is a highly dangerous vector-borne infectious disease that has left a significant mark on history of humankind. There are 13 natural plague foci in the Caucasus, located on the territory of the Russian Federation, Azerbaijan, Armenia and Georgia. We performed whole-genome sequencing of Y. pestis strains, isolated in the natural foci of the Caucasus and Transcaucasia. Using the data of whole-genome SNP analysis and Bayesian phylogeny methods, we carried out an evolutionary-phylogeographic analysis of modern population of the plague pathogen in order to determine the phylogenetic relationships of Y. pestis strains from the Caucasus with the strains from other countries.ResultsWe used 345 Y. pestis genomes to construct a global evolutionary phylogenetic reconstruction of species based on whole-genome SNP analysis. The genomes of 16 isolates were sequenced in this study, the remaining 329 genomes were obtained from the GenBank database. Analysis of the core genome revealed 3315 SNPs that allow differentiation of strains. The evolutionary phylogeographic analysis showed that the studied Y. pestis strains belong to the genetic lineages 0.PE2, 2.MED0, and 2.MED1. It was shown that the Y. pestis strains isolated on the territory of the East Caucasian high-mountain, the Transcaucasian high-mountain and the Priaraksinsky low-mountain plague foci belong to the most ancient of all existing genetic lineages - 0.PE2.ConclusionsOn the basis of the whole-genome SNP analysis of 345 Y. pestis strains, we describe the modern population structure of the plague pathogen and specify the place of the strains isolated in the natural foci of the Caucasus and Transcaucasia in the structure of the global population of Y. pestis. As a result of the retrospective evolutionary-phylogeographic analysis of the current population of the pathogen, we determined the probable time frame of the divergence of the genetic lineages of Y. pestis, as well as suggested the possible paths of the historical spread of the plague pathogen.  相似文献   

8.
The potential use of CRISPR loci genotyping to elucidate population dynamics and microevolution of 146 Yersinia pestis strains from different biovars and locations was investigated in this work. The majority of strains from the Orientalis biovar presented specific spacer arrays, allowing for the establishment of a CRISPR signature for their respective isolates. Twenty-one new spacers were found in the Y. pestis strains from plague foci in Brazil. Ninety-three (64%) strains were grouped in the G1 genotype, whereas the others were distributed in 35 genotypes. This study allowed observing a microevolutionary process in a group of Y. pestis isolated from Brazil. We also identified specific genotypes of Y. pestis that were important for the establishment of the bacteria in plague foci in Brazil. The data have provided supporting evidence for the diversity and dynamics of CRISPR loci present in the genome of Y. pestis strains from plague foci in Brazil.  相似文献   

9.
The Yersinia pestis adhesin Ail mediates host cell binding and facilitates delivery of cytotoxic Yop proteins. Ail from Y. pestis and Y. pseudotuberculosis is identical except for one or two amino acids at positions 43 and 126 depending on the Y. pseudotuberculosis strain. Ail from Y. pseudotuberculosis strain YPIII has been reported to lack host cell binding ability, thus we sought to determine which amino acid difference(s) are responsible for the difference in cell adhesion. Y. pseudotuberculosis YPIII Ail expressed in Escherichia coli bound host cells, albeit at ∼50% the capacity of Y. pestis Ail. Y. pestis Ail single mutants, Ail-E43D and Ail-F126V, both have decreased adhesion and invasion in E. coli when compared to wild-type Y. pestis Ail. Y. pseudotuberculosis YPIII Ail also had decreased binding to the Ail substrate fibronectin, relative to Y. pestis Ail in E. coli. When expressed in Y. pestis, there was a 30–50% decrease in adhesion and invasion depending on the substitution. Ail-mediated Yop delivery by both Y. pestis Ail and Y. pseudotuberculosis Ail were similar when expressed in Y. pestis, with only Ail-F126V giving a statistically significant reduction in Yop delivery of 25%. In contrast to results in E. coli and Y. pestis, expression of Ail in Y. pseudotuberculosis led to no measurable adhesion or invasion, suggesting the longer LPS of Y. pseudotuberculosis interferes with Ail cell-binding activity. Thus, host context affects the binding activities of Ail and both Y. pestis and Y. pseudotuberculosis Ail can mediate cell binding, cell invasion and facilitate Yop delivery.  相似文献   

10.
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37°C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 109 cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague.  相似文献   

11.
YscB of Yersinia pestis Functions as a Specific Chaperone for YopN   总被引:5,自引:0,他引:5       下载免费PDF全文
Following contact with a eucaryotic cell, Yersinia species pathogenic for humans (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) export and translocate a distinct set of virulence proteins (YopE, YopH, YopJ, YopM, and YpkA) from the bacterium into the eucaryotic cell. During in vitro growth at 37°C in the presence of calcium, Yop secretion is blocked; however, in the absence of calcium, Yop secretion is triggered. Yop secretion occurs via a plasmid-encoded type III, or “contact-dependent,” secretion system. The secreted YopN (also known as LcrE), TyeA, and LcrG proteins are necessary to prevent Yop secretion in the presence of calcium and prior to contact with a eucaryotic cell. In this paper we characterize the role of the yscB gene product in the regulation of Yop secretion in Y. pestis. A yscB deletion mutant secreted YopM and V antigen both in the presence and in the absence of calcium; however, the export of YopN was specifically reduced in this strain. Complementation with a functional copy of yscB in trans completely restored the wild-type secretion phenotype for YopM, YopN, and V antigen. The YscB amino acid sequence showed significant similarities to those of SycE and SycH, the specific Yop chaperones for YopE and YopH, respectively. Protein cross-linking and immunoprecipitation studies demonstrated a specific interaction between YscB and YopN. In-frame deletions in yopN eliminating the coding region for amino acids 51 to 85 or 6 to 100 prevented the interaction of YopN with YscB. Taken together, these results indicate that YscB functions as a specific chaperone for YopN in Y. pestis.  相似文献   

12.

Background

The species Yersinia pestis is commonly divided into three classical biovars, Antiqua, Medievalis, and Orientalis, belonging to subspecies pestis pathogenic for human and the (atypical) non-human pathogenic biovar Microtus (alias Pestoides) including several non-pestis subspecies. Recent progress in molecular typing methods enables large-scale investigations in the population structure of this species. It is now possible to test hypotheses about its evolution which were proposed decades ago. For instance the three classical biovars of different geographical distributions were suggested to originate from Central Asia. Most investigations so far have focused on the typical pestis subspecies representatives found outside of China, whereas the understanding of the emergence of this human pathogen requires the investigation of strains belonging to subspecies pestis from China and to the Microtus biovar.

Methodology/Principal Findings

Multi-locus VNTR analysis (MLVA) with 25 loci was performed on a collection of Y. pestis isolates originating from the majority of the known foci worldwide and including typical rhamnose-negative subspecies pestis as well as rhamnose-positive subspecies pestis and biovar Microtus. More than 500 isolates from China, the Former Soviet Union (FSU), Mongolia and a number of other foci around the world were characterized and resolved into 350 different genotypes. The data revealed very close relationships existing between some isolates from widely separated foci as well as very high diversity which can conversely be observed between nearby foci.

Conclusions/Significance

The results obtained are in full agreement with the view that the Y. pestis subsp. pestis pathogenic for humans emerged in the Central Asia region between China, Kazakhstan, Russia and Mongolia, only three clones of which spread out of Central Asia. The relationships among the strains in China, Central Asia and the rest of the world based on the MLVA25 assay provide an unprecedented view on the expansion and microevolution of Y. pestis.  相似文献   

13.
The genetic basis of the varying ability to reduce nitrate in strains belonging to different biovars and subspecies of plague-causing microbe has been investigated and the inability to reduce nitrate observed in different intraspecies groups of Yersinia pestis has been shown to stem from mutations in different genes involved in the expression of this trait. The absence of denitrifying activity in strains of altaica and hissarica subspecies was not due to a mutation at position 613 of the periplasmic reductase napA observed in the strains of the biovar medievalis of the main subspecies, but rather was due to a mutation in the sequence encoding the nitrate-binding domain of the ABC transporter protein SsuA; a thymine insertion (+T) was detected at position 302 from the start of the ssuA gene. Five strains of biovar antiqua isolated at different times in Mongolia, China, and Africa were shown to lack the ability to reduce nitrate. A PCR test targeting two chromosomal regions containing deletions of 19 and 24 bp in size has been developed for the identification of strains of the biovar medievalis. This test can be combined with the test for the marker mutation in the napA gene for a more reliable detection of Y. pestis strains belonging to this biovar.  相似文献   

14.

Background

Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics.

Methodology/Principal Findings

The objective of this work was to develop an alternative to conventional phage lysis tests – a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages ϕA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. ϕA1122-specific qPCR enabled the detection of an initial bacterial concentration of 103 CFU/ml (equivalent to as few as one Y. pestis cell per 1-µl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, ϕA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR.

Conclusions/Significance

Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.  相似文献   

15.
We developed a biotin–streptavidin-based sandwich ELISA for the sensitive and specific detection of Yersinia pestis. In this assay, the F1 capsular protein and Y. pestis were captured by anti-F1 mouse monoclonal antibody followed by detection with biotinylated-anti-F1 rabbit polyclonal antibody and HRP-conjugated streptavidin. The developed F1 ELISA could detect not only the F1 protein up to 29 and 17 pg/ml but also Y. pestis up to 177.8 and 129.2 CFU/ml in PBS buffer and human serum, respectively. In addition, the F1 ELISA did not show any cross-reactivity with various proteins and bacterial strains.  相似文献   

16.
Meningitis caused by Yersinia pestis developed in 6 (6%) of a total of 105 patients with plague reported to the Centers for Disease Control from 1970 to 1979. Five of the six cases occurred in children aged 10 to 15 years. All six patients received antibiotic therapy before meningitis developed, which appeared between the 9th and 14th days after the onset of acute illness in five of the six patients. There were no neurologic sequelae. The antigenic and biochemical profiles of the Y pestis strains isolated from cerebrospinal fluid in the meningitis cases did not differ from those of the Y pestis strains obtained from blood and bubo aspirates in the other 99 patients, and neither did in vitro studies suggest antibiotic resistance. While plague meningitis is an uncommon complication of acute plague infection, physicians in the western United States should be aware that it may develop as much as 14 days after antibiotic therapy for the acute plague infection has been initiated.  相似文献   

17.

Background

Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined.

Methodology and Principal Findings

The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer''s patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis.

Conclusions and Significance

The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality.  相似文献   

18.
Several pathogenicity islands have recently been identified in different bacterial species, including a high-pathogenicity island (HPI) in Yersinia enterocolitica 1B. In Y. pestis, a 102-kb chromosomal fragment (pgm locus) that carries genes involved in iron acquisition and colony pigmentation can be deleted en bloc. In this study, characterization and mapping of the 102-kb region of Y. pestis 6/69 were performed to determine if this unstable region is a pathogenicity island. We found that the 102-kb region of Y. pestis is composed of two clearly distinct regions: an ≈35-kb iron acquisition segment, which is an HPI per se, linked to an ≈68-kb pigmentation segment. This linkage was preserved in all of the Y. pestis strains studied. However, several nonpigmented Y. pestis strains harboring an irp2 gene have been previously identified, suggesting that the pigmentation segment is independently mobile. Comparison of the physical map of the 102-kb region of these strains with that of strain 6/69 and complementation experiments were carried out to determine the genetic basis of this phenomenon. We demonstrate that several different mechanisms involving mutations and various-size deletions are responsible for the nonpigmented phenotype in the nine strains studied. However, no deletion corresponded exactly to the pigmentation segment. The 102-kb region of Y. pestis is an evolutionarily stable linkage of an HPI with a pigmentation segment in a region of the chromosome prone to rearrangement in vitro.  相似文献   

19.
Yersinia adhesin A (YadA) is an essential virulence factor for the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis. Suprisingly, it is a pseudogene in Yersinia pestis. Even more intriguing, the introduction of a functional yadA gene in Y. pestis EV76 was shown to correlate with a decrease in virulence in a mouse model. Here, we report that wild type (wt) Y. enterocolitica E40, as well as YadA-deprived E40 induced the synthesis of neutrophil extracellular traps (NETs) upon contact with neutrophils, but only YadA-expressing Y. enterocolitica adhered to NETs and were killed. As binding seemed to be a prerequisite for killing, we searched for YadA-binding substrates and detected the presence of collagen within NETs. E40 bacteria expressing V98D,N99A mutant YadA with a severely reduced ability to bind collagen were found to be more resistant to killing, suggesting that collagen binding contributes significantly to sensitivity to NETs. Wt Y. pestis EV76 were resistant to killing by NETs, while recombinant EV76 expressing YadA from either Y. pseudotuberculosis or Y. enterocolitica were sensitive to killing by NETs, outlining the importance of YadA for susceptibility to NET-dependent killing. Recombinant EV76 endowed with YadA from Y. enterocolitica were also less virulent for the mouse than wt EV76, as shown before. In addition, EV76 carrying wt YadA were less virulent for the mouse than EV76 expressing YadAV98D,N99A. The observation that YadA makes Yersinia sensitive to NETs provides an explanation as for why evolution selected for the inactivation of yadA in the flea-borne Y. pestis and clarifies an old enigma. Since YadA imposes the same cost to the food-borne Yersinia but was nevertheless conserved by evolution, this observation also illustrates the duality of some virulence functions.  相似文献   

20.

Background

Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress.

Methodology/Principal Findings

To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV), and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not.

Conclusion/Significance

Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号