首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2-Hydroxy-5-nitrobenzyl bromide, at a 100-fold molar excess, was observed to react withthrombin at pH 4.0 to give a modified enzyme which possessed 20% of the fibrinogen clotting activity and 80% of the esterase activity compared to a control preparation. Spectrophotometric analysis of the modified protein indicated that this effect on catalytic activity was associated with the incorporation of 1 mol of reagent per mol of thrombin. Amino acid analysis showed no loss of amino acids other than tryptophan. The reaction of N-bromosuccinimide with thrombin at 2-fold molar excess resulted in the modification of one tryptophan per mol of enzyme with the loss of 80% of the fibrinogen clotting activity with, as above, a considerably smaller loss of esterase activity. Oxidation of thrombin with N-bromosuccinimide decreased the extent of subsequent tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Thrombin modified with 2-hydroxy-5-nitrobenzyl bromide showed a 3-4 fold increase in Km and a decrease in V for the ester substrate. The reaction of thrombin with 2-acetoxy-5-nitrobenzyl bromide, a substrate analogue, also resulted in the inactivation of the enzyme. The data are interpreted to show the presence of a tryptophan residue at or near the enzyme's substrate binding site.  相似文献   

2.
A homogeneous preparation of glyoxylate synthetase from greening potato tubers was used to study the functional role of disulphide groups, lysine and tryptophan residues in enzyme catalysis. The formation of a thioisoindole derivative was demonstrated by spectral analysis of the reduced and o-phthalaldehyde-treated enzymes. o-Phthalaldehyde modification resulted in about a 25 % loss of tryptophan emission at 336 nm and the appearance of a 410-nm emission peak characteristic of a thioisoindole. Ferrous iron was capable of generating thiol groups and addition of substrate resulted in a faster disappearance of these thiols. The optimal time for maximum glyoxylate synthesis by glyoxylate synthetase paralleled the disappearance of these thiols. Involvement of lysine and tryptophan residues in the enzyme reaction was demonstrated by the inhibition of activity by pyridoxal 5′-phosphate and dimethyl(2-hydroxy 5-nitrobenzyl) sulphonium bromide (DMHNB), respectively. Pyridoxal phosphate strongly and reversibly inhibited glyoxylate synthetase, and substrate and metal ion provided significant protection against inhibition. The results suggest that the lysine residue may be at or near the active binding site. The lysyl residue formed a Schiff base with pyridoxal phosphate which was stabilised by NaBH4. Glyoxylate synthetase was also irreversibly inactivated by a tryptophan selective reagent, DMHNB, while substrate provided substantial protection against inactivation. Kinetic analysis and correlation of the spectral data at 410 nm indicated that complete inactivation by DMHNB resulted from the modification of 5 tryptophan residues/subunit, of which one was essential for activity. The available evidence suggests a possible concerted action of enzyme disulphides, ferrous iron, lysine and aromatic amino acid residues in the synthesis of glyoxylate by this enzyme.  相似文献   

3.
Reaction of Cerebratulus lacteus toxin B-IV with 2-hydroxy-5-nitrobenzyl bromide at pH 4.5 results in modification of toxin tryptophan residues and loss of biological activity. With relatively small reagent excesses, one tryptophan per molecule is modified without major effect on toxicity. Further reaction results in modification of a second residue of tryptophan and loss of at least 95% of the toxic activity. Modification of one or both tryptophan residues is without significant effect on the secondary structure of the protein. The specificity of each phase of the reaction has been assessed by fingerprint analysis of peptides derived from toxin modified to differing extents with 2-hydroxy-5-nitrobenzyl bromide. It is thus possible to show that tryptophan-5 reacts first and tryptophan-30 only under more rigorous conditions. It thus appears that tryptophan-30 is essential for full neurotoxic activity.  相似文献   

4.
Ribulose 1,5-bisphosphate carboxylase [3-phospho-D-glyceratecarboxy-lyase (dimerizing), EC 4.1.1.39] is rapidly and irreversibly inactivated by micromolar concentrations of dimethyl (2-hydroxy-5-nitrobenzyl) sulphonium bromide (DMHNB), a tryptophan selective reagent, after reversible protection of the reactive sulphydryl groups. The inactivation followed pseudo-first-order reaction kinetics. Replots of the kinetic data indicated that no reversible enzyme-inhibitor complex was formed prior to irreversible modification. Kinetic analysis and the correlation of the spectral data at 410 nm with enzyme activity indicated that inactivation by DMHNB resulted from modification of on an average one tryptophan per 67 kDa combination of large and small subunits. Several competitive inhibitors and substrate RuBP offered strong protection against inhibition. The k1/2 (protection) for RuBP was 1.3 mM, indicating that the tryptophan residues may be located at or near the substrate binding site. Free and total sulphydryl groups were not affected by the reagent. The modified enzyme exhibited significantly reduced intrinsic fluorescence, indicating that the microenvironment of the tryptophans at the active site is significantly perturbed. Tryptic peptide profiles and CD spectral analyses suggested that inactivation may not be due to the extensive conformational changes in the enzyme molecule during modification.  相似文献   

5.
An essential tryptophan residue for rabbit muscle creatine kinase   总被引:1,自引:0,他引:1  
The tryptophan residues in rabbit muscle creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) have been modified by dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide after reversible protection of the reactive SH groups. The modification of two tryptophan residues as measured by spectrophotometric titration leads to complete loss of enzymatic activity. Control experiments show that reversible protection of the reactive SH groups as S-sulfonates followed by reduction results in nearly quantitative recovery of enzyme activity. The presence of a 410 nm absorption maximum and the decrease in fluorescence of the modified enzyme indicate the modification of tryptophan residues. At the same time, SH determinations after reduction of the modified enzyme show that the reagent has not affected the protected SH groups. Quantitative treatment of the data (Tsou, C.-L. (1962) Sci. Sin. 11, 1535 1558) shows that among the tryptophan residues modified, one is essential for its catalytic activity. The presence of substrates partially protects the modification of tryptophan residues as well as the inactivation, suggesting that the essential tryptophan residue is situated at the active site of this enzyme.  相似文献   

6.
Mucor pusillus acid protease was rapidly inactivated with 1 : 1 stoichiometry by reaction with diazoacetyl-DL-norleucine methyl ester (DAN) in the presence of cupric ions. Cupric ions were essential for this inactivation. The rate of inactivation was maximal at around pH 6 when the enzyme was mixed with DAN and cupric ions without prior mixing of the reagents, and at pH 5.3 when DAN and cupric ions were mixed and incubated before addition to the enzyme solution. In both cases, the rate of inactivation decreased as the pH was either increased or decreased. The amino acid composition of an acid hydrolysate of the DAN-Modified enzyme was indistinguishable from that of the native enzyme except for the incorporation of about one norleucine residue per molecule of protein. The enzyme was also inactivated by reaction with 1,2-epoxy-3-(p-nitrophenoxy)-propane (EPNP). At the stage of about 90% inactivation, 1.50 residues of EPNP were incorporated per molecule of protein and the rate of inactivation followed pseudo-first order kinetics. The optimal pH for the inactivation was pH 3.0 and the rate of inactivation decreased as the pH was either increased or decreased. Furthermore, the enzyme was strongly inhibited by pepstatin, and the reactions of DAN and of EPNP was also inhibited significantly by prior treatment of the enzyme with pepstatin. These results suggest that the enzyme may have two essential carboxyl groups at the active site, one reactive with DAN in the presence of cupric ions and the other with EPNP, and that pepstatin binds part of the active site to inhibit the reactions with DAN and EPNP as well as the enzyme activity.  相似文献   

7.
Chemical modification of purified d-glucosaminate dehydratase (GADH) apoenzyme by N-ethyl-maleimide (NEM) and by 7-chloro-4-aminobenzo-2-oxa-1,3-diazole (NBDC1) resulted in the time- and concentration-dependent inactivation of the enzyme in each case. The inactivation followed pseudo-first-order kinetics and a double-logarithmic plot of the observed pseudo-first-order rate constant against reagent concentration proved evidence for an approximately first-order reaction, suggesting that the modification of a single cysteine residue per mole of enzyme resulted in inactivation. Amino acid analysis of the NEM-inactivated enzyme showed that three moles of cysteine residues among six moles per mole of subunit were modified under these conditions, therefore one of the three cysteine residues modified by NEM may be essential for activity. Pyridoxal 5′-phosphate (PLP) and D-glucosaminate (GlcNA) protected the enzyme against inactivation by NEM and NBDCI. The apoenzyme was inactivated by EDTA and activity of enzyme was restored by incubation with Mn2+ in the presence of PLP. Incubation of the EDTA-treated enzyme with NEM inhibited the restoration of activity. These results suggest that one of the cysteine residues of GADH may be chelated to a Mn2+ at or near the active site of GADH, contributing to formation of the active enzyme.  相似文献   

8.
Glyoxalase I from human erythrocytes was studied by use of the strong reversible competitive inhibitor S-p-bromobenzylglutathione. Replacements of cobalt, manganese and magnesium for the essential zinc in the enzyme were made by a new procedure involving 10% methanol as a stabilizer of the enzyme. The Km value for the adduct of methylglyoxal and glutathione was essentially unchanged by the metal substitutions, whereas the inhibition constant for S-p-bromobenzylglutathione increased from 0.08μm for the Zn-containing enzyme to 1.3, 1.7 and 2.4μm for Co-, Mn- and Mg-glyoxalase I respectively. Binding of the inhibitor to the enzyme caused quenching of the tryptophan fluorescence of the protein, from which the binding parameters could be determined by the use of non-linear regression analysis. The highest dissociation constant was obtained for apoenzyme (6.9μm). The identity of the corresponding kinetic and binding parameters of the native enzyme and the Zn2+-re-activated apoenzyme and the clear differences from the parameters of the other metal-substituted enzyme forms give strong support to the previous identification of zinc as the natural metal cofactor of glyoxalase I. Binding to apoenzyme was also shown by the use of S-p-bromobenzylglutathione as a ligand in affinity chromatography and as a protector in chemical modification experiments. The tryptophan-modifying reagent 2-hydroxy-5-nitrobenzyl bromide caused up to 85% inactivation of the enzyme. After blocking of the thiol groups (about 8 per enzyme molecule) 6.1 2-hydroxy-5-nitrobenzyl groups were incorporated. Inclusion of S-p-bromobenzylglutathione with the modifying reagent preserved the catalytic activity of the enzyme completely and decreased the number of modified residues to 4.4 per enzyme molecule. The findings indicate the presence of one tryptophan residue in the active centre of each of the two subunits of the enzyme. Thiol groups appear not to be essential for catalytic activity. The presence of at least two categories of tryptophan residues in the protein was also shown by quenching of the fluorescence by KI.  相似文献   

9.
Extracellular xylanase produced in submerged culture by a thermotolerant Streptomyces T7 growing at 37-50 degrees C was purified to homogeneity by chromatography on DEAE-cellulose and gel filtration on Sephadex G-50. The purified enzyme has an Mr of 20,463 and a pI of 7.8. The pH and temperature optima for the activity were 4.5-5.5 and 60 degrees C respectively. The enzyme retained 100% of its original activity on incubation at pH 5.0 for 6 days at 50 degrees C and for 11 days at 37 degrees C. The Km and Vmax. values, as determined with soluble larch-wood xylan, were 10 mg/ml and 7.6 x 10(3) mumol/min per mg of enzyme respectively. The xylanase was devoid of cellulase activity. It was completely inhibited by Hg2+ (2 x 10(-6) M). The enzyme degraded xylan, producing xylobiose, xylo-oligosaccharides and a small amount of xylose as end products, indicating that it is an endoxylanase. Chemical modification of xylanase with N-bromosuccinimide, 2-hydroxy-5-nitrobenzyl bromide and p-hydroxymercuribenzoate (PHMB) revealed that 1 mol each of tryptophan and cysteine per mol of enzyme were essential for the activity. Xylan completely protected the enzyme from inactivation by the above reagents, suggesting the presence of tryptophan and cysteine at the substrate-binding site. Inactivation of xylanase by PHMB could be restored by cysteine.  相似文献   

10.
The tryptophan residues of the cellulase (EC 3.2.1.4; 1,4-beta-D-glucan 4-glucanohydrolase) from Schizophyllum commune were oxidized by N-bromosuccinimide in both the presence and absence of substrates and inhibitors of the enzyme. In the absence of protective ligands, eight of the twelve tryptophan residues in the cellulase were susceptible to modification with concomitant inactivation of the enzyme. The binding of the substrates, CM-cellulose, methyl cellulose, cellohexaose or lichenan and the competitive inhibitor, cellobiose, protected one tryptophan residue from oxidation but did not prevent the inactivation. Characterization of the oxidized enzyme derivatives by ultraviolet difference absorption and by fluorescence spectroscopy indicated that two tryptophan residues are essential in the mechanism of cellulase catalysis. One residue appears to be directly involved in the binding of substrate, while the second residue is proposed to constitute an integral part of a catalytically sound active centre.  相似文献   

11.
Reaction of alpha-mannosidase (alpha-D-mannoside mannohydrolase, EC 3.2.1.24) from Phaseolus vulgaris with N-bromosuccinimide or 2-hydroxy-5-nitrobenzyl bromide- resulted in loss of enzyme activity. Spectral absorption and fluorescence studies, as well as amino acid analysis, suggested that only tryptophan residues had been modified. No change in conformation could be detected by density gradient ultracentrifugation or circular dichroism of alpha-mannosidase modified by N-bromosuccinimide to virtually zero enzyme activity. The inhibition was partly offset by the substrate analogue alpha-methyl-D-mannoside and the competitive inhibitor mannono-1,4-lactone. Concomitantly, two tryptophan residues fewer were oxidized per molecule. After modification V was reduced, while Km seemed unchanged. Further, there was found evidence for the enzyme having a secondary structure dominated by beta-pleated sheets.  相似文献   

12.
Inactivation of pig kidney dipeptidyl peptidase IV (EC 3.4.14.5) by photosensitization in the presence of methylene blue at pH 7.5 was observed to have pseudo-first-order kinetics. During the process, until over 95% inactivation was achieved, the histidine and tryptophan residues were decreased from 14.0 to 2.7 and 12.6 to 7.1, respectively, per 94,000-Da subunit, without any detectable changes in other photosensitive amino acids. Modification of four histidine residues per subunit using diethylpyrocarbonate resulted in only 30% inactivation of the enzyme, while N-bromosuccinimide almost completely inactivated the enzyme with the modification of only one tryptophan residue per subunit, as determined by absorption spectrophotometry at 280 nm. The protective action of the substrate and inhibitors such as Ala-Pro-Ala and Pro-Pro against the modification of tryptophan residues with N-bromosuccinimide was observed both fluorometrically and by measurement of activity. On the basis of these results it is suggested that one of the tryptophan residues in the enzyme subunit is essential for the functioning of the substrate binding site of pig kidney dipeptidyl peptidase IV.  相似文献   

13.
Streptavidin, the non-glycosylated bacterial analogue of the egg-white glycoprotein avidin, was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl (Hnb) bromide. As with avidin, complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per streptavidin subunit. Tryptic peptides obtained from an Hnb-modified streptavidin preparation were fractionated by reversed-phase h.p.l.c., and three major Hnb-containing peptide fractions were isolated. Amino acid and N-terminal sequence analysis revealed that tryptophan residues 92, 108 and 120 are modified and probably comprise part of the biotin-binding site of the streptavidin molecule. Unlike avidin, the modification of lysine residues in streptavidin failed to result in complete loss of biotin-binding activity. The data imply subtle differences in the fine structure of the respective biotin-binding sites of the two proteins.  相似文献   

14.
The structural accessibility of tryptophan residues in leucyl-tRNA synthetase from cow mammary gland has been studied using chemical modifications by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide. The modifications were monitored by UV absorbance and intrinsic fluorescence of the enzyme's tryptophan residues. Under native conditions, at pH 7,8, only two exposed tryptophan residues are modified in each subunit of the dimeric enzyme. Under denaturing conditions, in 6 M guanidine hydrochloride solution, internal tryptophan residues are also modified as a consequence of unfolding of the native tertiary structure of the enzyme. Modifications of tryptophan residues resulted in inactivation of leucyl-tRNA synthetase both in aminoacylation and ATP-PPi exchange reactions. In the specific complex of leucyl-tRNA synthetase with the cognate tRNALeu one of exposed tryptophan residues is protected by tRNALeu and is not modified by the above reagents.  相似文献   

15.
W K?ller  P E Kolattukudy 《Biochemistry》1982,21(13):3083-3090
Cutinase from Fusarium solani f. sp. pisi was inhibited by diisopropyl fluorophosphate and phenylboronic acid, indicating the involvement of an active serine residue in enzyme catalysis. Quantitation of the number of phosphorylated serines showed that modification of one residue resulted in complete loss of enzyme activity. One essential histidine residue was modified with diethyl pyrocarbonate. This residue was buried in native cutinase and became accessible to chemical modification only after unfolding of the enzyme by sodium dodecyl sulfate. The modification of carboxyl groups with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the absence of sodium dodecyl sulfate did not result in inactivation of the enzyme; however, such modifications in the presence of sodium dodecyl sulfate resulted in complete loss of enzyme activity. The number of residues modified was determined by incorporation of [14C]glycine ethyl ester. Modification of cutinase in the absence of sodium dodecyl sulfate and subsequent unfolding of the enzyme with detergent in the presence of radioactive glycine ester showed that one buried carboxyl group per molecule of cutinase resulted in complete inactivation of the enzyme. Three additional peripheral carboxyl groups were modified in the presence of sodium dodecyl sulfate. Carbethoxylation of the essential histidine and subsequent incubation with the esterase substrate p-nitrophenyl [1-14C]acetate revealed that carbethoxycutinase was about 10(5) times less active than the untreated enzyme. The acyl-enzyme intermediate was stabilized under these conditions and was isolated by gel permeation chromatography. The results of the present chemical modification study indicate that catalysis by cutinase involves the catalytic triad and an acyl-enzyme intermediate, both characteristic for serine proteases.  相似文献   

16.
The active site of glutathione S-transferase isoenzyme 4-4, purified from rat liver, was studied by chemical modification. Tetrachloro-1,4-benzoquinone, a compound previously shown to inactivate glutathione S-transferases very efficiently by covalent binding in or close to the active site, completely prevented the alkylation of the enzyme by iodoacetamide, indicating that the reaction had taken place with cysteine residues. Both from radioactive labeling and spectral quantification experiments, evidence was obtained for the covalent binding of three benzoquinone molecules per subunit, i.e. equivalent to the number of cysteine residues present. This threefold binding was achieved with a fourfold molar excess of the benzoquinone, illustrating the high reactivity of this compound. Comparison of the number of amino acid residues modified by tetrachloro-1,4-benzoquinone with the decrease of catalytic activity revealed an almost complete inhibition after modification of one cysteine residue. Chemical modification studies with diethylpyrocarbonate indicated that all four histidine residues of the subunit are ethoxyformylated in an at least partially sequential manner. Modification of the second histidine residue resulted in complete loss of catalytic activity. Preincubation of the transferase with the glutathione conjugate of tetrachloro-1,4-benzoquinone resulted in 78% protection against this modification. However, glutathione itself hardly protected against the reaction with diethylpyrocarbonate. The intrinsic fluorescence properties of the enzyme were affected by covalent binding of tetrachloro-1,4-benzoquinone. The concentration dependency of the fluorescence quenching is strongly correlated with the inactivation of the enzyme, indicating that covalent binding of the benzoquinone occurs in the vicinity of at least one tryptophan residue. Finally, the binding of bilirubin, as measured by means of circular dichroism, was inhibited by preincubation of the enzyme with tetrachloro-1,4-benzoquinone in a manner which strongly correlated with the loss of enzymatic activity, the protection against inactivation by diethylpyrocarbonate, and the fluorescence quenching. All processes showed a 70-80% decrease after incubation of the enzyme with an equimolar amount of the benzoquinone. Thus, evidence is presented for the presence of a cysteine, a histidine and a tryptophan residue in, or in the vicinity of, the active site of the glutathione S-transferase 4 subunit.  相似文献   

17.
Chemical modification of phospholipase A2 (phosphatide 2-acyl-hydrolase, EC 3.1.1.4) from the venom of gaboon adder (Bitis gabonica) showed that histidine and lysine residues are essential for enzyme activity. Treatment with p-bromophenacyl bromide or pyridoxal 5'-phosphate resulted in the specific covalent modification of one histidine or a total of one lysine residue per molecule of enzyme, respectively, with a concomitant loss of enzyme activity. Competitive protection against modification and inactivation was afforded by the presence of Ca2+ and/or micellar concentrations of substrate analogue, lysophosphatidylcholine. Neither modification caused any significant conformational change, as judged from circular dichroic properties. Amino acid analyses and the alignment of peptides from cyanogen bromide and proteolytic cleavage of modified enzyme preparations delineated His-45 as the only residue modified by p-bromophenacyl bromide. However, pyridoxal 5'-phosphate was shown to have reacted not with a single lysine but with four different ones (residues 11, 33, 58 and 111) in such a manner that an overall stoichiometry of one modified lysine residue/molecule enzyme resulted. Apparently, the essential function of lysine could be fulfilled by any one out of these four residues.  相似文献   

18.
1. Seveal selective reagents were employed to identify the amino acid residues essential for the catalytic activity of sucrase-isomaltase. 2. Modification of histidine, lysine and carboxyl residues resulted in a partial inactivation of the enzyme. Substrates or competitive inhibitors provided protection against inactivation only in the reaction of carboxyl groups with carbodiimide (+lycine ethyl ester) or with diazoacetic ethyl ester. This indicated the occurrence of carboxyl groups at the two active centers of the enzyme complex. 3. Protection against inactivation of the enzyme by carbodiimide was provided also by the presence of alkali and alkaline earth metal ions, which are non-essential activators of sucrase-isomaltase. The presence of Na+ and Ba2+ protected approximately one carboxyl group per active center from reacting with carbodiimide plus glycine ethyl ester. 4. The carbodiimide-reactive groups were not identical with the two carboxylate groups recently found to react with conduritol-B-epoxide, an active-site-directed inhibitor of sucrase-isomaltase (Quaroni, A. and Semenza, G., 1976, J. Biol. Chem 251,3250--3253). A possible role for the carbodiimide-reactive carboxyl groups at the active centers of sucrase-isomaltase is discussed.  相似文献   

19.
Chemical modification studies of manganese(III)-containing acid phosphatase [EC 3.1.3.2] were carried out to investigate the contributions of specific amino-acid side-chains to the catalytic activity. Incubation of the enzyme with N-ethylmaleimide at pH 7.0 caused a significant loss of the enzyme activity. The inactivation followed pseudo-first-order kinetics. Double log plots of pseudo-first-order rate constant vs. concentration gave a straight line with a slope of 1.02, suggesting that the reaction of one molecule of reagent per active site is associated with activity loss. The enzyme was protected from inactivation by the presence of molybdate or phosphate ions. Amino acid analyses of the N-ethylmaleimide-modified enzyme showed that the 96%-inactivated enzyme had lost about one histidine and one-half lysine residue per enzyme subunit without any significant decrease in other amino acids, and also demonstrated that loss of catalytic activity occurred in parallel with the loss of histidine residue rather than that of lysine residue. Molybdate ions also protected the enzyme against modification of the histidine residue. The enzyme was inactivated by photooxidation mediated by methylene blue according to pseudo-first-order kinetics. The pH profile of the inactivation rates of the enzyme showed that an amino acid residue having a pKa value of approximately 7.2 was involved in the inactivation. These studies indicate that at least one histidine residue per enzyme subunit participates in the catalytic function of Mn(III)-acid phosphatase.  相似文献   

20.
Diethyl pyrocarbonate inactivates Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] by a simple bimolecular reaction. The inactivation is not reversed by hydroxylamine. The pH curve of inactivation indicates the involvement of a residue with a pK of 8.8. Several lines of evidence show that the inactivation is due to the modification of epsilon-amino groups of lysyl residues. Although histidyl residue is also modified, this is not directly correlated to the inactivation. No cysteinyl, tyrosyl, or tryptophyl residue or alpha-amino group is significantly modified. The modification of three lysyl residues per enzyme subunit results in the complete loss of aldolase activity toward various 4-hydroxy-2-oxo acid substrates, whereas oxaloacetate beta-decarboxylase activity associated with the enzyme is not inhibited by this modification. Statistical analysis suggests that only one of the three lysyl residues is essential for activity. l-4-Carboxy-4-hydroxy-2-oxoadipate, a physiological substrate for the enzyme, strongly protects the enzyme against inactivation. Pi as an activator of the enzyme shows no specific protection. The molecular weight of the enzyme, Km for substrate or Mg2+, and activation constant for Pi are virtually unaltered after modification. These results suggest that the modification occurs at or near the active site and that the essential lysyl residue is involved in interaction with the hydroxyl group but not with the oxal group of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号