首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Fibroblast growth factor receptors (FGFR) are widely expressed in many tissues and cell types, and the temporal expression of these receptors and their ligands play important roles in the control of development. There are four FGFR family members, FGFR-1-4, and understanding the ability of these receptors to transduce signals is central to understanding how they function in controlling differentiation and development. We have utilized signal transduction by FGF-1 in PC12 cells to compare the ability of FGFR-1 and FGFR-3 to elicit the neuronal phenotype. In PC12 cells FGFR-1 is much more potent in the induction of neurite outgrowth than FGFR-3. This correlated with the ability of FGFR-1 to induce robust and sustained activation of the Ras-dependent mitogen-activated protein kinase pathways. In contrast, FGFR-3 could not induce strong sustained Ras-dependent signals. In this study, we analyzed the ability of FGFR-3 to induce the expression of sodium channels, peripherin, and Thy-1 in PC12 cells because all three of these proteins are known to be induced via Ras-independent pathways. We determined that FGFR-3 was capable of inducing several Ras-independent gene expression pathways important to the neuronal phenotype to a level equivalent of that induced by FGFR-1. Thus, FGFR-3 elicits phenotypic changes primarily though activation of Ras-independent pathways in the absence of robust Ras-dependent signals.  相似文献   

2.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

3.
We have investigated the signaling properties of the fibroblast growth factor (FGF) receptor substrate 3 (FRS3), also known as SNT-2 or FRS2beta, in neurotrophin-dependent differentiation in comparison with the related adapter FRS2 (SNT1 or FRS2alpha). We demonstrate that FRS3 binds all neurotrophin Trk receptor tyrosine kinases and becomes tyrosine phosphorylated in response to NGF, BDNF, NT-3 and FGF stimulation in transfected cells and/or primary cortical neurons. Second, the signaling molecules Grb2 and Shp2 bind FRS3 at consensus sites that are highly conserved among FRS family members and that Shp2, in turn, becomes tyrosine phosphorylated. While FRS3 over-expression in PC12 cells neither increases NGF-induced neuritogenesis nor activation of Map kinase/AKT, comparable to previous reports on FRS2, over-expression of a chimeric adapter containing the PH/PTB domains of the insulin receptor substrate (IRS) 2, in place of the PTB domain of FRS3 (IRS2-FRS3) supports insulin-dependent Map kinase activation and neurite outgrowth in PC12 cells. Collectively, these data demonstrate that FRS3 supports ligand-induced Map kinase activation and that the chimeric IRS2-FRS3 adapter is stimulating sufficient levels of activated MapK to support neurite outgrowth in PC12 cells.  相似文献   

4.
5.
The discoidin domain receptor (DDR1) is characterized by a discoidin I motif in the extracellular domain, an unusually long cytoplasmic juxtamembrane (JM) region, and a kinase domain that is 45% identical to that of the NGF receptor, TrkA. DDR1 also has a major splice form, which has a 37 amino acid insert in the JM region with a consensus Shc PTB site that is lacking in the shorter receptor. One class of ligands for the DDR receptors has recently been identified as being derived from the collagen family, but neither native PC12 cells, which express modest amounts of DDR1, nor transfected PC12 cells, which express much larger amounts of DDR1, respond to this ligand. A chimeric receptor, containing the extracellular domain of hPDGFRbeta fused to the transmembrane and intracellular regions of DDR1, also fails to mediate neuronal-like differentiation in stably transfected PC12 cells and is only weakly autophosphorylated. However, chimeric receptors, which are composed of combinations of intracellular regions from DDR1 and TrkA (with the extracellular domain of hPDGFRbeta), in some cases provided ligand (PDGF) -inducible receptor responses. Those with the TrkA kinase domain and the DDR1 JM regions were able to produce differentiation to varying degrees, whereas the opposite combination did not. Analysis of the signaling responses of the two chimeras with DDR1 JM sequences (with and without the insert) indicated that the shorter sequence bound and activated FRS2 whereas the insert-containing form activated Shc instead. Both activated PLCgamma through the carboxyl-terminal tyrosine of the TrkA domain (Y785 in TrkA residue numbering). Mutation of this site (Y-->F) eliminated PLCgamma activation (indicating there are no other cryptic binding sites for PLCgamma in the DDR1 sequences) and markedly reduced the differentiative activity of the receptor. This is in contrast to TrkA (or PDGFRbeta/TrkA chimeras), where ablation of this pathway has no notable effect on PC12 cell morphogenic responses. Thus, the activation of FRS2 and Shc (leading to MAPK activation) is weaker in the DDR1/TrkA chimeras than in TrkA alone, and the PLCgamma contribution becomes essential for full response. Nonetheless, both DDR1 JM regions contain potentially usable signaling sites, albeit they apparently are not activated directly in DDR1 (or DDR1 chimeras) in a ligand-dependent fashion. These findings suggest that the DDR1 receptors do have signaling capacity but may require additional components or altered conditions to fully activate their kinase domains and/or sustain the activation of the JM sites.  相似文献   

6.
A partnership between the ectodomain of the fibroblast growth factor receptor (FGFR) isotypes and the chains of pericellular matrix heparan sulfate determines the fibroblast growth factor (FGF) and cell-type specificitives of the FGFR signaling complex. The contribution of the FGFR intracellular tyrosine kinase domains to the specificity of FGFR signaling is unclear. This report shows that the quantity and quality of phosphorylation of the FGFR kinase substrate SNT1 (also called FGFR substrate 2, FRS2) is both FGFR isotype and cell-type specific in prostate tumor epithelial cells at different stages of malignancy. Epithelial cell-resident FGFR2 that promotes homeostasis yields a low level of phosphorylated 65-kDa SNT1. Phosphorylation by ectopic FGFR1 that promotes malignancy was much more intense and yielded a phosphorylated 85-kDa SNT1. The amount of the 85-kDa SNT1 increased by 20-fold during proliferative aging of FGFR1-expressing cell populations that is required for FGFR1-stimulated mitogenesis and the malignant phenotype. In addition, the receptor-specific differential phosphorylation of SNT1 by FGFR isotypes, both of which are normally anchored to the cell membrane, occurred only in intact cells. Therefore, similar to kinase subunits within the heparan sulfate-FGFR complex, cell membrane and cytoskeletal context likely determine FGFR isotype- and cell-type-specific conformational relationships between FGFR kinases and external substrates. This determines the quantity and quality of SNT1 phosphorylation and differential signaling.  相似文献   

7.
成纤维细胞生长因子受体(FGFR)介导的SNT1(亦称为FRS2)底物磷酸化具有宿主细胞以及受体特异性。为探明这种宿主细胞特异性的决定因素,我们构建了1个FGFR2IIIb/R1嵌合受体。该嵌合受体具有1个FGFR2IIIb的胞外片段及1个FGFR1蛋白质酪氨酸激酶片段。当表达在3T3细胞(内源性受体为FGFR1并能强烈响应FGFR1)的信号)以及DTE-R1/100细胞时,该嵌合受体能即刻诱导SNT1磷酸化。DTE-R1/100细胞为经长期培养的带有外源性FGFR1的非恶性前列腺肿瘤上皮细胞(DTE)并已获得未转化DTE细胞所不具备的FGFR1信号响应性。与此相反,当表达在非转化DTE细胞或未经长期培养的FGFR1(DTE-R1)锂,FGFR2IIIb/R1嵌合受体则无法诱导SNT1磷酸化。我们曾报导DTE细胞对FGFR1介导的SNT1磷酸化活力及其刺激细胞生长信号的响应性是一种获得性的性质,这种性质的获得与细胞恶化是紧密联系在一起的。在此我们进一步证明FGFR介导的SNT1磷酸化具有宿主细胞特异性。这些结果表明细胞内围绕着激酶的微环境而不是细胞外环境决定了SNT1是否可为FGFR1所磷酸化。而且,长期受外源性FGFR1刺激诱发DTE细胞内微环境的变化,从而使表达在DTE细胞里的FGFR1激酶可强烈地磷酸化SNT1。  相似文献   

8.
During the continuous culturing of neural PC12 cells, a drug hypersensitive PC12 mutant cell line (PC12m3) was obtained, which demonstrated high neurite outgrowth when stimulated by various drugs. When the immunosuppressant drug FK506 and nerve growth factor (NGF) were introduced to the PC12m3 cells, the frequency of neurite outgrowth increased approximately 40-fold for NGF alone. However, the effect of FK506 on neuritogenesis in PC12 parental and drug insensitive PC12m1 mutant cells was much lower than in PC12m3 cells. The sustained activation of mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth of PC12 cells. Interestingly, the drug hypersensitive PC12m3 cells exhibited the sustained activation of MAP kinase with FK506 in comparison to low or no activities in PC12 parental or drug insensitive PC12m1 cells. These results indicate that PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

9.
成纤维细胞生长因子受体(FGFR)介导的SNT1(亦称为FRS2)底物磷酸化具有宿主细胞以及受体特异性。为探明这种宿主细胞特异性的决定因素,我们构建了1个FGFR2Ⅲb/R1嵌合受体。该嵌合受体具有1个FGFR2Ⅲb的胞外片段及1个FGFR1蛋白质酪氨酸激酶片断。当表达在3T3细胞(内源性受体为FGFR1并能强烈响应FGFR1的信号)以及DTE-R1/100细胞时,该嵌合受体能即刻诱导SNT1磷酸化。DTE-R1/100细胞为经长期培养的带有外源性FGFR1的非恶性前列腺肿瘤上皮细胞(DTE)并已获得未转化DTE细胞所不具备的FGFR1信号响应性。与此相反,当表达在非转化DTE细胞或未经长期培养的FGFR1转化细胞(DTE-R1)时,FGFR2Ⅲb/R1嵌合受体则无法诱导SNT1磷酸化。我们曾报导DTE细胞对FGFR1介导的SNT1磷酸化活力及其刺激细胞生长信号的响应性是一种获得性的性质,这种性质的获得与细胞恶化是紧密联系在一起的。在此我们进一步证明FGFR介导的SNT1磷酸化具有宿主细胞特异性。这些结果表明细胞内围绕着激酶的微环境而不是细胞外环境决定了SNT1是否可为FGFR1所磷酸化。而且,长期受外源性FGFR1刺激诱发DTE细胞内微环境的变化,从而使表达在DTE细胞里的FGFR1激酶可强烈地磷酸化SNT1。  相似文献   

10.
We obtained a drug-hypersensitive PC12 mutant cell (PC12m3), in which neurite outgrowth was strongly stimulated by various drugs such as FK506, calcimycin and cAMP, under the condition of NGF treatment. The frequency of neurite outgrowth stimulated by FK506 was approximately 40 times greater than by NGF alone. The effects of FK506 on neurite outgrowth in PC12m3 cells were inhibited by rapamycin, an FK506 antagonist, and by calcimycin, a calcium ionophore. PC12m3 cells had a strong NGF-induced MAP kinase activity, the same as PC12 parental cells. However, FK506-induced MAP kinase activity was detected only in PC12m3 cells. The activation of MAP kinase by FK506 in PC12m3 cells was markedly inhibited by rapamicin and calcimycin. FK506-induced MAP kinase activity was also inhibited by MAP kinase inhibitor U0126. These results demonstrate that drug-hypersensitive PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

11.
S Ihara  K Nakajima  T Fukada  M Hibi  S Nagata  T Hirano    Y Fukui 《The EMBO journal》1997,16(17):5345-5352
IL-6 induces differentiation of PC12 cells pretreated with nerve growth factor (NGF). We explored the signals required for neurite outgrowth of PC12 cells by using a series of mutants of a chimeric receptor consisting of the extracellular domain of the granulocyte-colony stimulating factor (G-CSF) receptor and the cytoplasmic domain of gp130, a signal-transducing subunit of the IL-6 receptor. The mutants incapable of activating the MAP kinase cascade failed to induce neurite outgrowth. Consistently, a MEK inhibitor, PD98059, inhibited neurite outgrowth, showing that activation of the MAP kinase cascade is essential for the differentiation of PC12 cells. In contrast, a mutation that abolished the ability to activate STAT3 did not inhibit, but rather stimulated neurite outgrowth. This mutant did not require NGF pretreatment for neurite outgrowth. Dominant-negative STAT3s mimicked NGF pretreatment, and NGF suppressed the IL-6-induced activation of STAT3, supporting the idea that STAT3 might regulate the differentiation of PC12 cells negatively. These results suggest that neurite outgrowth of PC12 cells is regulated by the balance of MAP kinase and STAT3 signal transduction pathways, and that STAT3 activity can be regulated negatively by NGF.  相似文献   

12.
Basic fibroblast growth factor (FGF-2) promotes survival and/or neurite outgrowth from a variety of neurons in cell culture and regenerative processes in vivo. FGFs exert their effects by activating cell surface receptor tyrosine kinases. FGF receptor (FGFR) inhibitors have not been characterized on neuronal cell behaviors to date. In the present study, we show that the FGFR1 inhibitor PD 173074 potently and selectively antagonized the neurotrophic and neurotropic actions of FGF-2. Nanomolar concentrations of PD 173074 prevented FGF-2, but not insulin-like growth factor-1, support of cerebellar granule neuron survival under conditions of serum/K(+) deprivation; another FGF-2 inhibitor, SU 5402, was effective only at a 1,000-fold greater concentration. Neither PD 173074 nor SU 5402, at 100 times their IC(50) values, interfered with the survival of dorsal root ganglion neurons promoted by nerve growth factor, ciliary neurotrophic factor, or glial cell line-derived neurotrophic factor. PD 173074 and SU 5402 displayed 1,000-fold differential IC(50) values for inhibition of FGF-2-stimulated neurite outgrowth in PC12 cells and in granule neurons, and FGF-2-induced mitogen-activated protein kinase (p44/42) phosphorylation. The two inhibitors failed to disturb downstream signalling stimuli of FGF-2. PD 173074 represents a valuable tool for dissecting the role of FGF-2 in normal and pathological nervous system function without compromising the actions of other neurotrophic factors.  相似文献   

13.
Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.  相似文献   

14.
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 micro m) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 micro m Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.  相似文献   

15.
p38 mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth. However, the underlying molecular mechanism(s) remains unclear. Here, we demonstrate that phospholipase D2 (PLD2) mediates p38 signaling in neurite outgrowth. Stimulation of rat pheochromocytoma PC12 cells with nerve growth factor activated PLD2 and augmented neurite outgrowth, both of which were inhibited by pharmacological suppression of p38. Overexpression of constitutively active MAP kinase kinase 6 (MKK6-CA) activated coexpressed PLD2 in PC12 and mouse neuroblastoma N1E-115 cells. Overexpression of wild-type PLD2 in these cells strongly augmented the neurite outgrowth induced by MKK6-CA, whereas lipase-deficient PLD2 suppressed it. These findings provide evidence that PLD2 functions as a downstream molecule of p38 in the neurite outgrowth signaling cascade.  相似文献   

16.
17.
Li P  Matsunaga K  Yamakuni T  Ohizumi Y 《Life sciences》2002,71(15):1821-1835
Picrosides I and II caused a concentration-dependent (> 0.1 microM) enhancement of basic fibroblast growth factor (bFGF, 2 ng/ml)-, staurosporine (10 nM)- and dibutyryl cyclic AMP (dbcAMP, 0.3 mM)-induced neurite outgrowth from PC12D cells. PD98059 (20 microM), a potent mitogen-activated protein (MAP) kinase kinase inhibitor, blocked the enhancement of bFGF (2 ng/ml)-, staurosporine (10 nM)- or dbcAMP (0.3 mM)-induced neurite outgrowth by picrosides, suggesting that picrosides activate MAP kinase-dependent signaling pathway. However, PD98059 did not affect the bFGF (2 ng/ml)-, staurosporine (10 nM)- and dbcAMP (0.3 mM)-induced neurite outgrowth in PC12D cells, indicating the existence of two components in neurite outgrowth induced by bFGF, staurosporine and dbcAMP, namely the MAP kinase-independent and the masked MAP kinase-dependent one. Furthermore, picrosides-induced enhancements of the bFGF-action were markedly inhibited by GF109203X (0.1 microM), a protein kinase C inhibitor. The expression of phosphorylated MAP kinase was markedly increased by bFGF (2 ng/ml) and dbcAMP (0.3 mM), whereas that was not enhanced by staurosporine (10 nM). Picrosides had no effect on the phosphorylation of MAP kinase induced by bFGF or dbcAMP and also unaffected it in the presence of staurosporine. These results suggest that picrosides I and II enhance bFGF-, staurosporine- or dbcAMP-induced neurite outgrowth from PC12D cells, probably by amplifying a down-stream step of MAP kinase in the intracellular MAP kinase-dependent signaling pathway. Picrosides I and II may become selective pharmacological tools for studying the MAP kinase-dependent signaling pathway in outgrowth of neurites induced by many kinds of neuritogenic substances including bFGF.  相似文献   

18.
To assess the contribution of the intracellular domain tyrosine residues to the signaling capacity of fibroblast growth factor receptor 1 (FGFR1), stably transfected chimeras bearing the ectodomain of the platelet-derived growth factor receptor (PDGFR) and the endodomain of FGFR1 were systematically altered by a tyrosine to phenylalanine bloc and individual conversions. The 15 tyrosine residues of the endodomain of this construct (PFR1) were divided into four linear segments (labeled A, B, C, and D) that contained 4, 4, 2, and 5 tyrosine residues, respectively. When stimulated by platelet-derived growth factor, derivatives in which the A, B, or A + B blocs of tyrosines were mutated were about two-thirds as active as the unmodified chimera at 48 h but achieved full activity by 96 h in a neurite outgrowth assay in transfected PC12 cells. Elimination of only the two activation loop tyrosines (C bloc) also inactivated the receptor. All derivatives in which 4 (or 5) of the D bloc tyrosines were mutated were inactive in producing differentiation but showed low levels of kinase activity in in vitro assays. Derivatives in which 1, 2, or 3 tyrosines of the D bloc in different combinations were systematically changed demonstrated that 2 residues (Tyr(677) and Tyr(701), using hFGFR1 numbering) were essential for bioactivity, but the remaining 3 residues, including Tyr(766), the previously identified site for phospholipase C gamma (PLC gamma) activation, were not. Differentiation activity was paralleled by the activation (phosphorylation) of FRS2, SOS, and ERK1/2. PLC gamma activity was dependent on the presence of Tyr(766) but also required Tyr(677) and/or Tyr(701). Although fully active chimeras did not require PLC gamma, the responses of chimeras showing reduced activation of FRS2 were significantly enhanced by this activity. These results establish that PFR1 does not utilize any tyrosine residues, phosphorylated or not, to activate FRS2. However, it does require Tyr(677) and/or Tyr(701), which may function to stabilize the active conformation directly or indirectly.  相似文献   

19.
The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and EGF induce Rap1 activation in PC12-Shb cells, while FGF-2 fails to do so. However, PC12 cells expressing Shb with an inactivated SH2 domain do not respond to NGF stimulation with Rap1 activation. The CrkII SH2 domain interacts with Shb and a 130- to 135-kDa phosphotyrosine protein present mainly in PC12-Shb cells and these interactions may thus relate to the effect of Shb on Rap1 activation. Transient expression of RalGDS-RBD or Rap1GAP to block the Rap1 pathway reduces the NGF-dependent neurite outgrowth in PC12-Shb cells. These results suggest a role of Shb in NGF-dependent Rap1 signaling and this pathway may be of significance for neurite outgrowth under certain conditions.  相似文献   

20.
A novel variant of the fibroblast growth factor receptor type 1 (FGFR-1) was identified in human placental RNA. In this receptor (FGFR-1L) portions of the second and third immunoglobulin-like (Ig-like) domains are deleted. To determine whether FGFR-1L was functional, full-length variant (pSV/FGFR-1L) and wild-type (pSV/FGFR-1) receptors were stably transfected into rat L6 myoblasts cells. Transfected L6 clones expressed respective proteins and bound (125)I-labeled FGF-2 with K(d) values of 99 pm (FGFR-1) and 26 pm (FGFR-1L). FGF-1 and FGF-2 competed efficiently with (125)I-FGF-2 for binding to FGFR-1 and FGFR-1L, whereas FGF-4 was less efficient. FGF-1, FGF-2, and FGF-4 enhanced mitogen-activated protein kinase (MAPK) activity, increased steady-state c-fos mRNA levels, and stimulated proliferation through either receptor, whereas KGF was without effect. FGFR-1 expressing clones exhibited ligand-induced tyrosine phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2), a 90-kDa adaptor protein that links FGFR-1 activation to the MAPK cascade. In contrast, tyrosine phosphorylation of FRS2 was not evident with FGFR-1L. In addition, phospholipase C-gamma was not tyrosine phosphorylated via activated FGFR-1L. These findings indicate that FGFR-1L binds FGF-1 and FGF-2 with high affinity and is capable of mitogenic signaling, but may activate MAPK to occur via non-classical signaling intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号