首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of neutral (galactocerebroside and asialo-ganglioside GM1) or anionic (sulphatide and gangliosides GM1, GD1a and GT1b) glycosphingolipids on the activity of phospholipase A2 from pig pancreas was studied in mixed monolayers of dilauroyl phosphatidylcholine with the glycosphingolipids in different molar fractions at various constant surface pressures. The activity of the enzyme depends on the proportion and type of glycosphingolipid in the interface. Sulphatide activates the enzyme at all proportions, whereas galactocerebroside shows inhibition or activation depending on its proportion in the film. Asialo-ganglioside GM1 and gangliosides GM1, GD1a and GT1b can strongly inhibit the enzyme at relatively low molar fractions in the film in the following order: asialo-ganglioside GM1 less than ganglioside GM1 less than ganglioside GT1b less than ganglioside GD1a. The changes of activity are not due to a direct action of the lipids on the active centre or interfacial recognition region of the enzyme.  相似文献   

2.
Synthesis of ganglioside GD1b from ganglioside GD2 was demonstrated using Golgi membranes isolated from rat liver. Competition experiments using gangliosides GA2, GM2 and GD2 as substrates, and as mutual inhibitors for ganglioside galactosyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that galactosyl transfer to these three compounds, leading to gangliosides GA1, GM1a and GD1b respectively, is catalyzed by one enzyme. These results strengthen the hypothesis that the main site for the regulation of ganglioside biosynthesis occurs within the reaction sequence LacCer----GA3----GD3----GT3.  相似文献   

3.
Neuroblastoma and glioma cells were grown in the presence of [3H]galactose, and the incorporation of 3H into gangliosides and the transport of newly synthesized gangliosides to the cell surface were examined under different experimental conditions. A variety of drugs, including inhibitors of protein synthesis and energy metabolism, modulators of the cytoskeleton and the ionophore monensin, had no effect on the transport of newly synthesized GD1a in neuroblastoma cells. Only low temperature effectively blocked translocation to the plasma membrane. Monensin, however, had marked effects on the biosynthesis of gangliosides and neutral glycosphingolipids. Whereas incorporation of 3H into complex glycosphingolipids was reduced, labeling of glucosylceramide was increased in cells exposed to monensin. In addition, biosynthesis of the latter glycolipid was less susceptible to low temperatures than that of more complex ones. Previous studies have implicated the Golgi apparatus as the predominant site of glycosylation of gangliosides. As monensin has been reported to interfere with the Golgi apparatus, our results indicate that glucosylceramide may be synthesized at a site that is separate from the site where further glycosylation occurs. Once synthesis of a ganglioside is completed, transport of the molecule to the cell surface proceeds under conditions of cytoskeletal disruption, energy depletion and ionic inbalance, but not low temperature.  相似文献   

4.
Identity of GD1C, GT1a and GQ1b synthase in Golgi vesicles from rat liver   总被引:1,自引:0,他引:1  
H Iber  K Sandhoff 《FEBS letters》1989,254(1-2):124-128
Competition experiments using GM1b, GD1a and GT1b as substrates, and as mutual inhibitors for ganglioside sialyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that sialyl transfer to these three respective compounds, leading to gangliosides GD1C, GT1a and GQ1b, respectively, is catalyzed by one enzyme. These results are incorporated into a model for ganglioside biosynthesis and its regulation.  相似文献   

5.
Anabolic sialosylation of gangliosides in situ in rat brain cortical slices   总被引:1,自引:0,他引:1  
Radiolabeling of the sialic acid residues of gangliosides was examined in thin slices of rat brain cerebral cortex incubated under physiologic conditions in the presence of either [14C]N-acetyl-mannosamine (ManNAc) or cytidine 5'-monophosphoryl-[14C]N-acetyl-neuraminic acid (CMP-NeuAc). CMP-NeuAc is the direct donor substrate in the transfer of sialic acid to gangliosides by sialosyl transferases (SATs), including ectosialosyl transferases at the cell surface. ManNAc must be internalized by the neural cells (neuronal or glial) where it serves as an obligate precursor for the biosynthesis of the NeuAc moiety of intracellular CMP-NeuAc, via multiple reactions in the cytosol and nucleus. When exogenous [14C]ManNAc was supplied, there appeared to be a 2-h lag period before label was incorporated measurably into ganglioside sialic acid. That was followed by rapid ganglioside labeling continuing up to 6 h. There was high incorporation into ganglioside GM1. Labeling by ManNAc was inhibited by monensin, a monovalent cationophore that blocks anabolic transport in medial and trans Golgi. Extracellular CMP-NeuAc was not internalized by the cells. CMP-[14C]NeuAc labeling of gangliosides had no lag period, reached a maximum within 2 h, and then began to level. The label distribution among gangliosides was high in GD3, but quite low in GM1. CMP-NeuAc labeling was not inhibited by 10(-7) M monensin. These findings support a model in which ManNAc labels gangliosides by an intracellular route involving monensin-sensitive, Golgi-associated SATs. In this intracellular system, the major labeled products are gangliosides of the gangliotetraosyl series (GM1, GD1a, etc.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

7.
The effect of end-product gangliosides (GD1a, GT1b, GQ1b) on the activities of two key enzymes in ganglioside biosynthesis, namely GM2-synthase and GD3-synthase in rat liver Golgi apparatus, has been investigated in detergent-free as well as in detergent-containing assays. In detergent-free intact Golgi vesicles, phosphatidylglycerol was used as a stimulant. This phospholipid was earlier shown to stimulate the activity of GM2-synthase without disrupting the vesicular intactness; it has, however, no effect on GD3-synthase (Yusuf, H.K.M., Pohlentz, G., Schwarzmann, G. & Sandhoff, K. (1983) Eur. J. Biochem. 134, 47-54). In the presence of this stimulant, all higher gangliosides inhibited the activity of GM2-synthase, the inhibition being more profound with increasing negative charge of the inhibiting gangliosides. These inhibitions are unspecific, but they do not exclude an end-product regulation of ganglioside biosynthesis. In detergent-solubilized Golgi membranes, on the other hand, the inhibition pattern was completely different. Here, ganglioside GD1a was the strongest inhibitor of GM2-synthase, followed by GM1 and GM2, but GT1b also inhibited this enzyme appreciably, in fact more strongly than GM1 or GM2. On the other hand, GQ1b had no effect at all. Conversely, GD3-synthase activity was most strongly inhibited by GQ1b, followed by GT1b, but GD1a also inhibited this enzyme almost as strongly as GT1b. These latter findings indicate that feed-back control of the a- and the b-series pathways of ganglioside biosynthesis is probably not specific, but the pathways appear to be inhibited more preferably by their respective end-products than by any other gangliosides of the same of the other series.  相似文献   

8.
Rat liver gangliosides (sialic acid containing glycosphingolipids) were analyzed by HPTLC and HPLC following either partial hepatectomy or sham operation. Analysis of whole liver gangliosides by HPTLC demonstrated that within 6 h after partial (68%) hepatectomy, there was a significant increase in GM1 compared to both sham and control animals. By 48 h, GM1 was further increased and the polysialylgangliosides GD1a, GD1b and GT1b had also risen significantly, whereas changes in GM3 were negligible. Gangliosides associated with the plasma membrane were increased up to 3.5-fold in regenerating liver compared to sham-hepatectomized controls as assessed by HPLC. Although elevations in membrane gangliosides were associated with hepatocyte proliferation, they did not closely follow the growth curve. The time course of changes in ganglioside biosynthesis suggests differential upregulation of GM3 synthase and GD3 synthase in regenerating livers.  相似文献   

9.
The effect of temperature on the behaviour of four different gangliosides (GM3, GM1, GD1a and GT1b), sulphatide, ceramide (Cer) and three neutral glycosphingolipids (GalCer, Gg3Cer, Gg4Cer) was investigated in monolayers at the air-NaCl (145 mM) interface. GM1, GD1a and GT1b are liquid-expanded in the range of temperatures studied (5-65 degrees C). GM3, sulphatide, Cer and neutral glycosphingolipids show isothermal liquid-expanded----liquid-condensed transitions. The collapse pressure of ganglioside monolayers decreases with temperature, whereas neutral glycosphingolipids may show some maximum values at particular temperatures. The reduction of the molecular area of liquid-expanded glycosphingolipids under compression occurs with a favorable positive entropy change and an unfavorable negative enthalpy. By contrast, the compression of interfaces with a two-dimensional phase transition occurs with an unfavorable entropy but a favorable enthalpy change. From the temperature dependence of the surface pressure at which the two-dimensional phase transition takes place, a minimal temperature above which the isotherm becomes totally liquid-expanded can be obtained. For the different glycosphingolipids this temperature decreases in the order Cer greater than GalCer greater than sulphatide greater than Gg3Cer greater than Gg4Cer greater than GM3 greater than GM1 greater than GD1a greater than GT1b. This sequence is similar to that found for the calorimetrically determined transition temperatures (cf. Maggio, B., Ariga, T., Sturtevant, J.M. and Yu, R.K. (1985) Biochemistry 24, 1084-1092).  相似文献   

10.
Neutral and acidic glycosphingolipids of Friend cells were characterized in 1) undifferentiated Friend cells (745A), 2) differentiated Friend cells induced with dimethyl-sulfoxide, and 3) solid tumors grown in mice after subcutaneous implantation of Friend cells. The structures of the isolated glycosphingolipids were determined by means of compositional analysis, methylation analysis and enzyme treatment. Gangliosides GD1a and N-acetylgalactosaminyl-GD1a, followed by GM1a and GM2, were the main gangliosides in undifferentiated Friend cells. GD1a and N-acetylgalactosaminyl-GD1a accounted for 45 and 25% of the total gangliosides, respectively. On differentiation, ganglioside GM2 decreased significantly, from 10% to a trace amount. In solid tumors, GD1a was the major ganglioside, whereas in contrast to the situation in the cultured cells, N-acetylgalactosaminyl-GD1a was almost completely absent, and ganglioside GM1b, but not GM1a, was detected. In addition, ganglioside GD1 alpha was detected in the solid tumors. Galactosylceramide, glucosylceramide, and lactosylceramide were the main neutral components in both types of cells, while globotetraosylceramide (globoside), IV3-N-acetyl-galactosaminyl globotetraosylceramide (Forssman glycolipid) and gangliotetraosylceramide (GA1) were major in solid tumors grown in vivo.  相似文献   

11.
The ganglioside content of rat hepatocytes increases several-fold during the first 6 days in monolayer culture. To correlate increased levels with rates of de novo synthesis, the incorporation of N-acetyl-[6-3H]D-mannosamine into individual gangliosides was determined. The calculation of synthetic rates was made possible by the simultaneous measurement of the specific radioactivity of the immediate sialic-acid donor, CMP-Neu5Ac. The CMP-Neu5Ac content of hepatocytes was found by HPLC analysis to be 30.5 nmol/g of plated cells. The specific radioactivity of this precursor pool reached a constant plateau 5 h after addition of the labeled N-acetyl-mannosamine and remained constant for at least 70 h. The incorporation into individual gangliosides was measured in primary cultures of rat hepatocytes between 72 and 144 h after seeding. During this period, the increase in ganglioside levels was greatest. The highest rates of incorporation were seen in GD1a followed by GM3, GM1, GD3 and the polysialylated compounds. The following rates of synthesis (nmol per 60 h and mg of protein) were calculated: GD1a 0.68, GM3 0.59, GM1 0.36, GD3 0.13 and GT1 0.02. These values are compared with the net increase of the gangliosides as measured by the resorcinol reaction.  相似文献   

12.
The glycosphingolipids of human lymphoma MOLT-4 cells were studied, using biochemical methods and specific antisera to gangliosides. The major neutral glycosphingolipids were found to be glucosyl- and lactosyl ceramides. GM3, GM2, GM1 and GD1a were identified as ganglioside components.  相似文献   

13.
Glucosylceramide, radiolabelled on the glucose residue, was administered to rats and the radioactive gangliosides formed at different time points were chemically characterized. They were identified as GM3, GM1, GD1a and GD1b, each one carrying only radioactive glucose. The time course of each individual ganglioside showed that the simpler gangliosides were formed earlier but were consumed earlier than the more complex ones, resulting in radioactivity patterns that were different at each time point. Only 30 h after injection did it resemble that of endogenous rat liver gangliosides. These results indicate that an extensive precursor-product relationship actually exists in the course of ganglioside biosynthesis.  相似文献   

14.
Glycosphingolipids of human aorta   总被引:1,自引:0,他引:1  
The structures of the main gangliosides of human aorta (intima and media) were elucidated. The main component (67%) was identified as N-acetylneuraminosyl-lactosylceramide (ganglioside GM3). The aorta tissue contained also gangliosides GM1, GD3, GD1a, and GT1. All sialic acid residues in gangliosides were present as N-acetyl-neuraminosyl derivatives. Among neutral glycosphingolipids of human aorta, the main components were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. The preliminary data suggest that the composition of the investigated glycosphingolipids in tissue might vary upon atherosclerosis lesions of aorta.  相似文献   

15.
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an effective inhibitor of UDP-glucose:ceramide glucosyltransferase, caused growth inhibition of cultured rabbit skin fibroblasts in a dose-dependent manner. At 50 microM both threo and erythro isomers of PDMP completely suppressed the cell growth. Major gangliosides of the fibroblasts, GM3 and GD3, were greatly reduced in amounts in the presence of threo-PDMP and accumulation of ceramides was observed. Surface labeling with galactose oxidase and [3H]NaBH4 demonstrated that neural glycosphingolipids with four or more sugars present on the surface of control cells were not detectable when the fibroblasts were grown in medium containing threo-PDMP. Metabolic labeling of cellular glycosphingolipids with [14C]-galactose showed reduced incorporation of radioactivity into gangliosides and neutral glycosphingolipids when threo-PDMP was present in the medium. In contrast, the erythro isomer of PDMP did not affect the biosynthesis of glycosphingolipids, a result suggesting that the inhibitory effect of erythro-PDMP on cell growth was due to a mechanism other than the inhibition of glucosyltransferase.  相似文献   

16.
During rat liver regeneration, the ganglioside content and distribution undergo significant changes after partial hepatectomy; total liver gangliosides increase remarkably till the 4th day after surgery, thereafter progressively decreasing to reach the values of sham-operated controls at the 12th day. The qualitative pattern is characterized by the 95% relative increase of GD1a at the 4th day and the 40% relative decrease of GD1b. In order to investigate the processes of ganglioside penetration into cells, degradation and biosynthesis, radiolabelled GM1 ([Sph-3H] GM1) was administered. One day after hepatectomy the liver uptake and metabolism of exogenous ganglioside were significantly reduced. Three days post-surgery these parameters were restored to control values; however an increased radioactivity incorporation was found in GD1a, thus suggesting an enhancement of its biosynthesis around the 4th day. The data reported here suggest that in the first two days after partial hepatectomy, the ganglioside degradation is reduced with a consequent increase of ganglioside content; later on the catabolic routes normalize and some biosynthetic processes leading to GD1a are enhanced. GD1a seems to be a marker of a peculiar transition phase of liver regeneration.  相似文献   

17.
Ganglioside GM2, 3H-labeled in the sphingoid base, was added to the culture medium of normal and GM2 gangliosidosis fibroblasts. Ganglioside was found to adsorb rapidly to the cell surface, most of it could however be removed by trypsination. The trypsin-resistant incorporation was about 10 nmol/mg cell protein, after 48 h. The rates of adsorption and incorporation depended strongly on the concentration of fetal calf serum in the medium, higher serum concentrations being inhibitory. After various incubation times, the lipids were extracted, separated by thin-layer chromatography and visualized by fluorography. In normal cells a variety of degradation products as well as sphingomyelin was found whereas in GM2 gangliosidosis cells, only trace amounts of such products (mainly GA2) were found. In contrast, the higher gangliosides GM1 and GD1a were formed in comparable amounts (2.2-3.6% of total radioactivity after 92 h) in normal and pathologic cell lines. Supplementation of cells from GM2 gangliosidosis, variant AB, with purified GM2-activator protein restored ganglioside GM2 degradation to almost normal rates but had no effect on its glycosylation to gangliosides GM1 and GD1a. From these results we conclude that the synthesis of higher gangliosides from incorporated GM2 can occur by direct glycosylation and not only via lysosomal degradation and resynthesis from [3H]sphinganine-containing degradation products. Preliminary studies with subcellular fractionation after various times of [3H]ganglioside incorporation indicated biphasic kinetics for the net transport of membrane-inserted ganglioside to lysosomes, compatible with the notion that a portion of the glycolipids can also escape from secondary lysosomes and migrate to Golgi compartment or cell surface.  相似文献   

18.
We have studied the incorporation of [(14)C]serine and of [(3)H]sphingosine into sphingomyelin in the presence or absence of brefeldin A (BFA) in three different cell types. Administration of BFA (1 microgram/ml) to fibroblasts for 24 h increased the incorporation of label into sphingomyelin 1.5-3 fold compared with untreated controls. In contrast, BFA strongly decreased sphingomyelin biosynthesis (4-5 fold) in cerebellar neurons as well as in neuroblastoma cells. The effect of BFA on glycosphingolipid formation, however, was similar in all three cell types studied: an increased labeling of the precursor glycolipids GlcCer, LacCer, GM3 and GD3 was paralleled by a decreased formation of complex gangliosides, GM1, GD1a, GT1b and GQ1b. Our data therefore suggest that in neuronal cells sphingomyelin synthesis, like the formation of complex gangliosides, is localized primarily distal to the BFA block, in a post-Golgi compartment, most probably the trans-Golgi network, whereas in fibroblasts sphingomyelin biosynthesis is mainly localized prior to the BFA block, in the Golgi apparatus, as has been shown for LacCer, GlcCer, GM3 and GD3 synthases.  相似文献   

19.
Soluble gangliosides in cultured neurotumor cells   总被引:3,自引:3,他引:0  
Abstract: The biosynthesis and degradation of glycosphingolipids were studied in cytosolic and membrane fractions obtained from rat glioma C6 cells. Both pools had a similar composition of neutral glycosphingolipids but the soluble pool contained only a few percent of the total. The major ganglioside in C6 cells was GM3, of which only 2% was soluble. Whereas the bulk of the membrane GM3 was accessible to surface labeling procedures, the soluble GM3 was not. Mouse neuroblastoma N18 cells also contained small amounts of cytoplasmic gangliosides corresponding to GM3, GM2, GM1, and GDla. When C6 cells were incubated with medium containing [3H]galactose at 37°C, the specific activity of soluble GM3 initially increased more rapidly than that of membrane GM3; by 4 h, the specific activities in both pools became equal. Total incorporation into the membrane pool, however, was always several-fold greater even at the shortest incubation times examined. The labeling pattern of neutral glycosphingolipids in both soluble and membrane fractions indicated the existence of a precursor-product relationship between glucosylceramide and other glycosphingolipids. When labeled cells were transferred to nonradioactive medium, glucosylceramide disappeared the most rapidly, with a 50% loss within <6 h. The turnover rates of other glycosphingolipids were much slower. Although cytosolic GM3 was degraded more rapidly (t1/2= 26 h) than membrane-bound GM3 (t1/2= 44 h), its turnover rate was much slower than the time required for transport of GM3 to the cell surface (20–30 min). Our results are consistent with the existence of a small intracellular pool of soluble gangliosides and neutral glycosphingolipids that is stable and independent of the main membrane-bound pool. Although the role of these cytosolic glycolipids is unknown, they do not appear to represent a transport pool between the site of synthesis and the plasma membrane.  相似文献   

20.
Uncoupling of ganglioside biosynthesis by Brefeldin A   总被引:13,自引:0,他引:13  
We have studied the effect of Brefeldin A (BFA), an antiviral antibiotic, on glycosphingolipid metabolism in primary cultured cerebellar cells. Cells were labeled metabolically with [14C]galactose, or pulse-labeled with precursors of glycosphingolipid biosynthesis; i.e., [14]serine, [3H]palmitic acid or [3H]sphingosine. In all cases BFA (1 microgram/ml) strongly inhibited (75-95%) ganglioside biosynthesis beyond the stage of GM3 and GD3, that is the formation of GM1, GD1a, GT1b and GQ1b. Simultaneously an accumulation of GlcCer, LacCer, GM3 and GD3 was observed (up to 2000%). These effects could be reversed fully by removal of the BFA from the culture medium. These results indicate that the LacCer-, GM3- and GD3-synthases of murine cerebellar cells are localized together on the proximal site of the Golgi apparatus, probably in the cis-Golgi compartment. It is probable that sphingomyelin synthase and some of the other glycosyltransferases involved in ganglioside biosynthesis are localized in distinct compartments beyond the cis Golgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号