首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 72 毫秒
1.
One common class of ant-plant mutualism involves ants that defend plants from natural enemies in return for food and sometimes shelter. Studies of these interactions have played a major role in shaping our broad understanding of mutualism. Their central contribution has come via their development of approaches to measuring the benefits, costs, and net outcomes of mutualism, and their explicit consideration of variability in all of these phenomena. Current research on these interactions is suggesting ecological and evolutionary hypotheses that may be applicable to many other forms of mutualism. It is also generating comparative data for testing the few general theories about mutualism that currently exist.  相似文献   

2.
3.
Abstract. 1. Ants, parasitoids and flies are about equally frequent at foliar nectaries of Byttneria aculeata (Sterculiaceae) in lowland Costa Rica during the dry season, a pattern previously unreported but also observed at other plants in the area.
2. Species of Ectatomma, Crematogaster and Camponotus were the most frequent of twenty-four ant species on Byttneria, eight of which nested in the hollow stems. Ants spent most time at nectaries and little in patrolling.
3. Collections at nectaries yielded large numbers of species of parasitoid Hymenoptera with few individuals of each. Rearing studies of leaf-feeding herbivores yielded several species of parasitoids, including one species taken at a nectary and two others congeneric or closely related.
4. Flies appear to be nectar thieves, in the same sense as non-pollinating floral visitors, despite close association with Byttneria.
5. Ant-plants may be poor models for the larger number of species of less specialized plants with extrafloral nectaries. Plants which have only extrafloral nectaries may better suit the needs of parasitoids than ants, and plants such as Byttneria may benefit as much from parasitoids as from ants.  相似文献   

4.
    
Abstract.  1. Field investigation of the association between sponge gourd, Luffa cylindrica plants and its ant visitors revealed that five of the six most frequent species: Camponotus compressus, C. paria, Pheidole sp., Pachycondyla tesserinoda and Tetramorium sp. mainly visited the extrafloral (EF) nectaries present on the leaves, bracts, bracteoles and calyx of the plant. Tapinoma melanocephalum was the only ant species observed at the floral as well as the EF nectaries.
2. A bioassay of ant behaviour revealed aversion to young and mature unisexual flowers of sponge gourd in the five predominantly EF nectary-visiting ant species, while floral preference was demonstrated in T. melanocephalum. A significant difference was not found in the number of insect pollinators visiting T. melanocephalum occupied and un-occupied flowers, suggesting the absence of deterrent effect of this tiny ant species on the pollinators.
3. Further behavioural assays showed preference for 2- and 4-day-old leaves and also 2-day-old buds, while the 4-day-old buds induced avoidance in all the species. Androecium and gynoecium had significantly higher repellent effects in comparison to the petals. Thus floral repellents, probably help to reduce nectar theft and prevent loss of pollen function.
4. This aversion was not demonstrated in the case of old flowers. A significantly greater number of insect pollinators visited young and mature flowers compared with old flowers, suggesting that selective exclusion of medium- and large-sized EF nectary-visiting ant species from the flowers, as a result of aversion to floral repellents, serves to avoid the threat of attack to insect pollinators of sponge gourd.  相似文献   

5.
6.
Summary. In central Mexico, the ant Brachymyrmex obscurior Forel feeds on nectar produced by extrafloral nectaries of Acacia pennatula (Schlecht. & Cham.) Benth. However, no studies have determined whether the ants visitation is related to plant nectar availability and whether ants protect A. pennatula from herbivory. The objectives of this 2-yr study (2000–2001) were to assess whether seasonal changes in ant visitation coincide with extrafloral nectar productivity in A. pennatula and to determine whether ants protect the plant. At the end of the dry season (April–June) B. obscurior was the only ant species on A. pennatula and extrafloral nectar production is limited to this period. Exclusion experiments, performed at the end of the dry season showed that A. pennatula did not receive a protective benefit when visited by ants. Branches with ants and branches where ants are excluded had similar numbers of the nonmyrmecophile leafhopper Sibovia sp. which was the only herbivore observed under natural conditions.Received 24 March 2004; revised 4 September 2004; accepted 8 September 2004.  相似文献   

7.
Abstract. 1. We determined mortality and distributional patterns of leaf miners on three oak host species (Quercus falcata, Q.nigra and Q.hemisphaerica) in northern Florida, U.S.A.
2. Patterns of intra- and interspecific occurrence within leaves, and mortality of five most abundant leaf miner species were analysed as a test of competition.
3. Miners co-occurred on leaves more often that expected by chance (P<0.05) in six of ten possible species combinations and log-linear model analysis showed no negative higher-order interactions.
4. All five miner species had highly clumped distributions between leaves (P<0.01).
5. Leaf miner survival was less than expected for four of five species when co-occurring on leaves with conspecifics than when mining with heterospecifics or alone (P<0.05).
6. We conclude that interspecific competition is unapparent within this leaf miner guild and that intraspecific competition occurs in four of the five major leaf miner species. We discuss leaf miner selection of common leaves, perhaps based on chemical/physical leaf characters, as a cause of intra- and interspecific aggregation.  相似文献   

8.
    
Field studies investigating the impact of ants on the reproduction of plants bearing extrafloral nectaries have traditionally focused on seed production, a component of female fitness. The purpose of this study was to test whether ants can affect the pollen viability, a component of male fitness, when they visit flowers of the shrub Acacia constricta. Acacia constricta inflorescences hand-pollinated with flowers over which Formica perpilosa ants had crawled set significantly fewer seed pods than inflorescences hand-pollinated by control flowers that had no contact with ants. Many ant species secrete antibiotic substances onto the integument that render pollen inviable, and these secretions are probably the mechanism for reduced pollen viability in this study. The ratio of seed pods produced by self-pollinated inflorescences to those produced by cross-pollinated inflorescences was 0.16, indicating that A. constricta is largely self-incompatible. Because F. perpilosa workers forage primarily on the acacia tree under which they nest, they are unlikely to serve as efficient vectors of outcrossing. Previous work showed that A. constricta shrubs with F. perpilosa ants produce approximately twice as many seeds as similarly sized plants not so associated. The results indicate that association with F. perpilosa could cause a reproductive trade-off for A. constricta: benefits to female function may be accompanied by costs to male function. Selection to discourage ant visitation to flowers may have affected the pollination biology of this and other ant-associated plant species.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Abstract The association between visiting ants and the extrafloral nectaries (EFN)‐bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats – a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non‐nectariferous neighbouring plants. In the sandy forest the proportion of live termite baits attacked by ants on H. pernambucensis was much higher than on plants lacking EFNs. In the mangrove, however, ants attacked equal numbers of termites on either plant class. Ant attendance to tuna/honey baits revealed that overall ant activity in the sandy forest is higher than in the mangrove area. The vertical distribution (ground vs. foliage) of ant activity also differed between habitats. While in the mangrove foraging ants were more frequent at baits placed on foliage, in the sandy forest ant attendance was higher at ground baits. Plants housing ant colonies were more common in the mangrove than in the sandy forest. Frequent flooding in the mangrove may have resulted in increased numbers of ant nests on vegetation and scattered ant activity across plant foliage, irrespective of possession of EFNs. Thus plants with EFNs in the mangrove may not experience increased ant aggression towards potential herbivores relative to plants lacking EFNs. The study suggests that the vertical distribution of ant activity, as related to different nest site distribution (ground vs. foliage) through a spatial scale, can mediate ant foraging patterns on plant foliage and probably affect the ants’ potential for herbivore deterrence on an EFN‐bearing plant species.  相似文献   

10.

Background and Aims

Early ontogenetic stages of myrmecophytic plants are infrequently associated with ants, probably due to constraints on the production of rewards. This study reports for the first time the anatomical and histological limitations constraining the production of extrafloral nectar in young plants, and the implications that the absence of protective ants imposes for plants early during their ontogeny are discussed.

Methods

Juvenile, pre-reproductive and reproductive plants of Turnera velutina were selected in a natural population and their extrafloral nectaries (EFNs) per leaf were quantified. The anatomical and morphological changes in EFNs during plant ontogeny were studied using scanning electron and light microscopy. Extrafloral nectar volume and sugar concentration were determined as well as the number of patrolling ants.

Key Results

Juvenile plants were unable to secrete or contain nectar. Pre-reproductive plants secreted and contained nectar drops, but the highest production was achieved at the reproductive stage when the gland is fully cup-shaped and the secretory epidermis duplicates. No ants were observed in juvenile plants, and reproductive individuals received greater ant patrolling than pre-reproductive individuals. The issue of the mechanism of extrafloral nectar release in T. velutina was solved given that we found an anatomical, transcuticular pore that forms a channel-like structure and allows nectar to flow outward from the gland.

Conclusions

Juvenile stages had no ant protection against herbivores probably due to resource limitation but also due to anatomical constraints. The results are consistent with the growth-differentiation balance hypothesis. As plants age, they increase in size and have larger nutrient-acquiring, photosynthetic and storage capacity, so they are able to invest in defence via specialized organs, such as EFNs. Hence, the more vulnerable juvenile stage should rely on other defensive strategies to reduce the negative impacts of herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号