首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Experimental mycology》1990,14(4):416-425
Cellular turgor pressure is thought to provide the driving force for hyphal extension and for a variety of other fungal processes. This study was conducted to evaluate three different approaches to the measurement of hyphal turgor in the aquatic fungus Achlya bisexualis. Turgor was determined indirectly from measurements of the osmotic potential of hyphal extracts using an osmometer and by a refined incipient plasmolysis technique. Turgor was also measured directly from individual growing hyphae using a micropipet-based pressure probe. Osmometry provided an estimate of the mean turgor of hyphae grown in liquid culture of 0.74 MPa, while the incipient plasmolysis technique indicated turgor pressures of between 1.0 and 1.2 MPa (10 to 12 bars). With the pressure probe, turgors ranging from 0.8 to 1.2 MPa were measured from 49 hyphae in the same difined medium. The low turgor estimates from the osmometric approach probably reflected dilution of the cell contents by cell wall and extracellular fluid during sample extraction. Recordings with the pressure probe showed that turgor did not vary along the length of the coenocytic hyphae and was independent of hyphal diameter. This paper presents the first report of the direct measurement of hyphal turgor pressure.  相似文献   

2.
Chlorella emersonii (211/11n) was grown at external NaCl concentrationsranging between 1.0 and 335 mM (0.08–1.64 MPa). Previousstudies showed that there was no significant change in the internalconcentrations of Na+ or Cl over this range, the concentrationsremaining below 35 mM. Relative growth rates of C. emersoniiwere 30–45% lower in 335 mM NaCl than in 1.0 mM NaCl.Turgor pressure varied with the osmotic pressure of the growthmedium. Plots of cell volume versus (external osmotic pressure)–1indicated that cells grown in 1.0 mM NaCl (0.08 MPa) had turgorpressures ranging from 0.5 to 0.8 MPa, while cells in 335 mMNaCl (1.64 MPa) had turgor pressures of 0.0–0.14 MPa.Estimates of turgor pressure derived from the osmotic pressureof cell sap had a mean value of 0.6 MPa for cells in 1.0 mMNaCl, and 0.3 MPa for cells in 335 mM NaCl. The volumetric elasticmodulus () depended on the osmotic pressure of the growth medium: was 8.5 ± 1.7 MPa for cells grown in 1.0 mM NaCl, and0.9 ± 0.6 for cells in 335 mM NaCl. was measured bychanging turgor pressures over the range 0.0–0.5 MPa,and was found to be independent of turgor. Electron micrographsshowed that the walls of cells grown in 335 mM NaCl were 70%thicker than those grown in 1.0 mM NaCl. Other changes in cellularstructure were small, however, the area occupied by vacuolesincreased from 7% in cells grown in 1.0 mM NaCl to 14% in cellsin 335 mM. The percent osmotic volume of cells grown in 1.0–335mM NaCl (61 ± 17%, v/v) was similar to the percent watercontent (59 ± 13%, w/w). Key words: Chlorella emersonii, Sodium chloride, Osmotic volume, Turgor, Volumetric-elastic-modulus  相似文献   

3.
Phaseolus vulgaris plants with expanding primary leaves weresubjected to dark-light or light-dark transition at a root temperatureof 25 °C, or to root cooling to 10 °C. Illuminationor darkening caused rapid changes in water flux through theplants and in epidermal turgor pressure when analysed by pressureprobe. However, these were not concurrent with variations inbulk leaf water potential and turgor pressure as determinedby the pressure chamber method. In addition, the turgor pressureof epidermis measured with the pressure probe was invariably0.05 to 0.15 MPa lower than that measured in bulk tissue withthe pressure chamber. Cooling roots to 10°C induced waterstress and wilting. Both techniques indicated a decrease ofturgor pressure, but a 20-30 min lag was observed with the pressurechamber. Due to stomatal closure and decreased transpiration,root-cooled plants regained cell turgor after 5-7 h of cooling,but bulk tissue and epidermal turgor (as well as leaf growthrate) remained significantly lower than control levels. Thesefindings indicate that changes in turgor pressure as the resultof hydraulic signalling are sufficient to explain the rapidchanges in growth rate following illumination or cooling reportedin earlier work (Sattin et al 1990). They also indicate thatdata obtained by use of the pressure chamber must be treatedwith caution. Key words: Phaseolus vulgaris, expansion growth, water relations, hydraulic signalling, pressure probe, pressure chamber  相似文献   

4.
The water relations of five species of tropical vascular epiphytesnative to Malaysia were studied. The species were ferns: Pyrrosiaadnascens (Forst.) Ching. and Pyrrosia angustata (Sw.) Ching.;orchids: Eria velutina Lindl., Dendrobium tortile Lindl. andDendrobium crumenatum Sw. Leaf resistance as a function of leafwater potential was measured for the two ferns. The criticalwater potential at which stomata closed was found to be highin each case; –0.75 MPa and –0.5 MPa respectively.The components of water potential were estimated with the pressurechamber as functions of relative water content. For each speciescell sap was found to be dilute, pressure potential low at fullturgor, and the change in relative water content between fullturgor and wilting point small. Small values of solute potentialat full turgor were also found for the ferns and E. velutinausing a vapour pressure osmometer. Values of the bulk modulusof elasticity of the leaf tissue for each species lay withinthe range of published data. The significance of these resultsfor the epiphytic way of life is discussed. Key words: Water potential, Epiphytes, Diffusive resistance, Orchid, Fern  相似文献   

5.
The quantitative relationship between turgor and the pressureexerted by the inner tissues (cortex, vascular tissue, and pith)on the peripheral cell walls (longitudinal tissue pressure)was investigated in hypocotyls of sunflower seedlings (Helianthusannuus L.) In etiolated hypocotyls cell turgor pressures, asmeasured with the pressure probe, were in the range 0·38to 0·55 MPa with an average of 0·48 MPa. In irradiatedhypocotyls turgor pressures varied from 0·40 to 0·57MPa with a, mean at 0·49 MPa. The pressure exerted bythe inner tissues on the outer walls was estimated by incubatingpeeled sections in a series of osmotic test solutions (polyethyleneglycol 8000). The length change was measured with a transducer.In both etiolated and irradiated hypocotyls an external osmoticpressure of 0·5 MPa was required to inhibit elongationof the inner tissues, i.e. the average cell turgor and the longitudinaltissue pressure are very similar quantities. The results indicatethat the turgor of the inner tissues is displaced to and borneby the thick, growth-limiting peripheral cell walls of the hypocotyl. Key words: Helianthus annuus, hypocotyl growth, tissue pressure, turgor pressure, wall stress  相似文献   

6.
Previous single-cell studies on the upper epidermis of barleyleaves have shown that cells differ systematically in theirsolute concentrations depending on their location relative tostomatal pores and veins and that during NaCl stress, gradientsin osmotic pressure () develop (Fricke et al., 1995, 1996; Hinde,1994). The objective of the present study was to address thequestion to which degree these intercellular differences insolute concentrations and it are associated with intercellulardifferences in turgor or water potential (). Epidermal cellsanalysed were located at various positions within the ridgeregions overlying large lateral or intermediate veins, in thetrough regions between those veins or in between stomata (i.e.interstomatal cells). Turgor pressure of cells was measuredusing a cell pressure probe, and of extracted cell sap wasdetermined by picolitre osmometry. For both large and intermediatelateral veins, there were no systematic differences in turgorbetween cells located at the base, mid or top of ridges, regardlessof whether plants were analysed at low or high PAR (10 or 300–400µmol photons m–2 s–1). However, turgor withina ridge region was not necessarily uniform, but could vary byup to 0.14 MPa (1.4 bar) between adjacent cells. In 60 out of63 plants, turgor of ridge cells was either slightly or significantlyhigher than turgor of trough (lowest turgor) or interstomatalcells (intermediate turgor). The significance and magnitudeof turgor differences was higher in plants analysed under highPAR or local air flow than in plants analysed under low PAR.The largest (up to 0.41 MPa) and consistently significant differencesin turgor were found in plants treated for 3–9 d priorto analysis with 100 mM NaCl. For both NaCl-treated and non-treated(control) plants, differences in turgor between cell types weremainly due to differences in since differences in were negligible(0.01–0.04 MPa). Epidermal cell , in NaCl-treated plantswas about 0.38 MPa more negative than in control plants dueto higher . Turgor pressures were similar. Following a suddenchange in rooting-medium or air humidity, turgor of both ridgeand trough cells responded within seconds and followed the sametime-course of relaxation. The half time (T1/2) of turgor relaxationwas not limited by the cell's T1/2 for water exchange. Key words: Barley leaf epidermis, cell turgor, heterogeneity, NaCl stress, osmotic pressure, water potential  相似文献   

7.
Turgor Pressure and Phototropism in Sinapis alba L. Seedlings   总被引:5,自引:0,他引:5  
Rich, T. C. G. and Tomos, A. D. 1988. Turgor pressure and phototropismin Sinapis alba L. seedlings.—J. exp. Bot 39: 291-299. Phototropic responses were studied in light-grown mustard hypocotyls.Phototropism was induced by adding 0.27 µmol m–2s–1 unilateral blue light to a background of low pressuresodium (SOX) lamp light. Curvatures of some 6° from thevertical were reached by 60 min, the curvature rate between20 min and 60 min being 0.14° min–1. From the axialgrowth rate and tissue geometry the local growth rates of illuminatedand shaded sides of the hypocotyl were calculated to be 1.5and 4.5 µmin–1 respectively. Turgor pressures ofexpanding cells in control plants and in the shaded and illuminatedsides of the blue light illuminated hypocotyls were measuredto be 0.40-0.55 MPa with a pressure probe. No changes in turgorpressure were observed on initiation of curvature. The decayof pressure in the cells of non-transpiring plants followingexcision indicated that the yield stress threshold of the tissuemay be as low as 0.1 MPa. These results indicate that the phototropicgrowth response in this tissue is not mediated by changes inturgor pressure. Key words: Sinapis alba L., phototropism, turgor pressure  相似文献   

8.
A modification of the pressure probe is described which allowsaccurate routine recording of the turgor pressure of singlecells at measured depth within a tissue. Measurements of radial profiles of turgor pressure in wheatroots grown in some simple salt solutions (0.5 mol m–3CaCl2, 0.5 mol m–3 CaCI2 plus 10 mol m–3 NaCl, and0.5 mol m–3 CaCl2 plus 10 mol m–3 KCI), are described.Turgor pressure was constant (approximately, 0.65 MPa) alonga radius within the elongation zone irrespective of the natureof the bathing solution. In mature root tissue turgor pressurein the cortex was lower than that of the growing zone in alltreatments and the pressure of the stele was on average 0.22MPa higher than that of the cortex. Potassium in the mediumbathing the root increased the turgor pressure in mature root(both cortex and stele) relative to low salt and sodium treatments. The results are discussed in relation to both root growth andion accumulation. Key words: Pressure probe, wheat roots, salt solution  相似文献   

9.
The purification of an acid invertase from washed discs of storageroots of red beet (Beta vulgaris L.) is described. An overallpurification of 1210-fold was obtained using a combination of(NH4)2SO4 precipitation, size-exclusion chromatography, ion-exchangechromatography, conA-sepharose chromatography and two roundsof FPLC on Mono Q HR 5/5, the first at pH 7·5, the secondat pH 6·5. The purified enzyme had a specific activityof 206  相似文献   

10.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

11.
HEUER  BRURIA; PLAUT  Z. 《Annals of botany》1981,48(3):261-268
The influence of salinity in the growing media on ribulose-1,5-bisphosphate (RuBP) carboxylase and on CO2 fixation by intactsugar beet (Beta vulgaris) leaves was investigated. RuBP carboxylase activity was mostly stimulated in young leavesafter exposure of plants for 1 week to 180 mM NaCl in the nutrientsolution. This stimulation was more effective at the higherNaHCO2 concentrations in the reaction medium. Salinity also enhanced CO2 fixation in intact leaves mostlyat rate-limiting light intensities. A 60 per cent stimulationin CO2 fixation rate was obtained by salinity under 450 µEm–2 s–1. At quantum flux densities of 150 µEm–2 s–1 (400–700 nm) this stimulation was280 per cent. Under high light intensities no stimulation bysalinity was found. In contrast, water stress achieved by directleaf desiccation or by polyethylene glycol inhibited enzymeactivity up to fourfold at –1.2 MPa. Beta vulgaris, sugar beet, ribulose-1, 5-bisphosphate carboxylase, salt stress, water stress, carbon dixoide fixation, salinity  相似文献   

12.
Spatial distribution of cell turgor pressure, cell osmotic pressure and relative elemental growth rate were measured in growing tall fescue leaves ( Festuca arundinacea ). Cell turgor pressure (measured with a pressure probe) was c . 0.55 MPa in expanding cells but increased steeply (+0.3 MPa) in cells where elongation had stopped. However, cell osmotic pressure (measured with a picolitre osmometer) was almost constant at 0.85 MPa throughout the leaf. The water potential difference between the growth zone and the mature zone (0.3 MPa) was interpreted as a growth-induced water potential gradient. This and further implications for the mechanism of growth control are discussed.  相似文献   

13.
BENJAMIN  L. R. 《Annals of botany》1988,62(2):199-214
The following empirical model: Ra(i) = r(1+ln(w(i)/wm)Kn)(1–(w(i)/W))(1–(y/Y)) which is based on the logistic growth equation, is developedto describe the growth of differently sized individuals withinplant communities. The model is tested against extensive setsof carrot (Daucus carota L.) and red beet (Beta vulgaris L.)data and is shown to fit well. The model was used to predictindividual plant weights in independent data. The agreementsbetween observed and predicted weights were often close butsome systematic deviations did occur. Thus, a single equationdescribed most of the complex interactions that occurred withinmonocultures of annual crop plants. Carrot, Daucus carota L., red beet, Beta vulgaris L., model, growth, variation  相似文献   

14.
The relationship between cell elongation, change in turgor andcell osmotic pressure was investigated in the sub-apical regionof hypocotyls of developing sunflower seedlings (Helianthusannuus L.) that were grown in continuous white light. Cell turgorwas measured with the pressure probe. The same hypocotyl sectionswere used for determination of osmotic pressure of the tissuesap. Acceleration of cell elongation during the early phaseof growth was accompanied by a 25% decrease in both turgor andosmotic pressure. During the linear phase of growth both pressuresremained largely constant. The difference between turgor andosmotic pressure (water potential) was –0.10 to –0.13MPa. Excision of one cotyledon had no effect on growth, turgorand osmotic pressure. However, after removal of both cotyledonscell elongation ceased and a substantial decrease in both pressureswas measured. In addition, we determined the longitudinal tissuepressure in seedlings from which one or both cotyledons hadbeen removed. Tissue pressure and turgor were very similar quantitiesunder all experimental conditions. Our results demonstrate thatturgor and cell osmotic pressure show a parallel change duringdevelopment of the stem. Cessation of cell elongation afterremoval of the cotyledons is attributable to a decrease in turgor(tissue) pressure, which provides the driving force for growthin the hypocotyl of the intact plant. Key words: Cell elongation, Helianthus annuus, osmotic pressure, tissue pressure, turgor  相似文献   

15.
Effect of Osmotic Stress on Turgor Pressure in Mung Bean Root Cells   总被引:3,自引:0,他引:3  
Turgor pressure in cells of the elongating region of intactmung bean roots was directly measured by using the pressure-probetechnique. After the external osmotic pressure had been increasedfrom 0 MPa to 0.5 MPa, turgor pressure rapidly decreased byabout 0.5 MPa from 0.65 MPa to 0.14 MPa and root elongationstopped. Subsequent turgor regulation was clearly confirmed,which followed the osmotic adjustment to maintain a constantdifference in the osmotic pressure between root-cell sap andthe external medium ( II). It took at least 6 h for turgor pressureto recover to an adjusted constant level of about 0.5 MPa dueto turgor regulation, but rootelongation resumed within onlyan hour after the osmotic treatment. Therefore, the resumptionof root elongation under osmotic stress could not have beendirectly connected with turgor regulation. Furthermore, sincethe amounts of decrease in turgor pressure just after applicationsof various degrees of osmotic stress could be interpreted inrelation to those in II, hydraulic conductivity between theinside and the outside of root cells must be large enough toattain water potential equilibrium rapidly in response to osmoticstress. We conclude that turgor pressure in the cells of theelongating region of mung bean roots is determined mainly by II because of water potential equilibrium. (Received January 27, 1987; Accepted May 21, 1987)  相似文献   

16.
Turgor pressure was measured in cortical cells and in xylem elements of excised roots and roots of intact plants of Zea mays L. by means of a cell pressure probe. Turgor of living and hence not fully differentiated late metaxylem (range 0.6–0.8 MPa) was consistently higher than turgor of cortical cells (range 0.4–0.6 MPa) at positions between 40 and 180 mm behind the root tip. Closer to the tip, no turgor difference between the cortex and the stele was measured. The turgor difference indicated that late-metaxylem elements may function as nutrient-storage compartments within the stele. Excised roots were attached to the root pressure probe to precisely manipulate the xylem water potential. Root excision did not affect turgor of cortical cells for at least 8 h. Using the cell pressure probe, the propagation of a hydrostatic pressure change effected by the root pressure probe was recorded in mature and immature xylem elements at various positions along the root. Within seconds, the pressure change propagated along both early and late metaxylems. The half-times of the kinetics, however, were about five times smaller for the early metaxylem, indicating they are likely the major pathway of longitudinal water flow. The hydraulic signal dissipated from the source of the pressure application (cut end of the root) to the tip of the root, presumably because of radial water movement along the root axis. The results demonstrate that the water status of the growth zone and other positions apical to 20 mm is mainly uncoupled from changes of the xylem water potential in the rest of the plant.Abbreviations and Symbols CPP cell pressure probe - EMX early metaxylem - LMX Late metaxylem - Pc cell turgor - Pr root pressure - RPP root pressure probe - t1/2,c half-time of water exchange across a single cell - t1/2 half-time of water exchange across multiple cells We thank Antony Matista for his expert assistance in the construction and modification of instruments. The work was supported by grant DCB8802033 from the National Science Foundation and grant 91-37100-6671 from USDA, and by the award of a Feodor Lynen-Fellowship from the Alexander von Humboldt-Foundation (Germany) to J.F.  相似文献   

17.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

18.
The water-relations parameters of Chara inflata cells were determineddirectly using the micro pressure probe technique. The turgorpressure of cells in artificial pond water (0 = 0.06 MPa) wasabout 0.65 MPa and the half-time (T1/2) for water exchange wasabout 6.5 s. The calculated values of the hydraulic conductivity(LP) were in the range 1–2 ? 10–6m s–1 (MPa)–1.The volumetric elastic modulus () was 32.8 MPa for turgor rangingfrom 0.77 to 0.82 MPa. Large changes in the water-relations parameters and the electricalproperties of the membrane occurred when the turgor was decreasedto low values. These changes included: (i) a decrease in theT1/2 for water exchange, (ii) an increase in LP and (iii) depolarizationof the membrane potential difference (Vm). The micro pressure probe, which enabled the turgor pressureof the cell to be altered, was used in combination with thevoltage-clamp technique to determine the relationship betweenK+ and Cl conductances of the plasmalemma and the cellturgor. The K+ conductance increased reversibly as the turgorwas reduced in the range 0 to 0.6 MPa and the Cl -conductanceincreased as the turgor was reduced in the range 0.1 to 0.5MPa. It is suggested that these pressure-dependent K+ and Clconductances may have a dual role in electrical events and thenon-electrical responses such as changes in the cell volume. Key words: Chara inflata, membrane conductances, ion channels, water-relations parameters  相似文献   

19.
Detrez, C., Tetu, T., Sangwan, R. S. and Sangwan-Norreel, B.S., 1988. Direct organogenesis from petiole and thin cell layerexplants in sugar beet cultured in vitro.—J. exp. Bot.39: 917–926. Plant regeneration was obtained by direct bud formation frompetiole as well as from thin cell layer explants taken fromsugar beet (Beta vulgaris L.) plants grown in vitro. The budswere mainly induced in the blade-petiole transition zone ofthe explants. High frequency bud regeneration was observed inpetiole and thin layer explants of 10 different breeding linesof sugar beet tested. Organogenesis resulted when petiole explantsexcised from 8-d-old seedlings grown on half-strength Murashigeand Skoog medium (MS) containing 3.0 mg dm–3 naphthaleneacetic acid (NAA), 3.0 mg dm–3 6-benzylaminopurine (BAP)and 1.0 mg dm–3 2, 3, 5, triiodobenzoic acid (TIBA) werecultured on MS with 3.0 mg dm–3 NAA and 3.0 mg dm–3BAP. Thin cell layer strips isolated from shoot apices culturedon MS medium supplemented with 0–9 mg dm–3 BAP or1.0 mg dm–3 indolebutyric acid (IBA) formed adventitiousbuds on MS medium containing 0–5 mg dm–3 NAA + 5.0mg dm–3 BAP. Histological studies confirmed the sub-epidermalorigin of shoots. Key words: Beta vulgaris, direct organogenesis, in vitro culture, petiole, regeneration, thin cell layer  相似文献   

20.
Roots of 3-d-old pea seedlings (Pisum sativum L.) were mechanically impeded using a sand core apparatus, which allowed mechanical impedance to be varied independently of aeration and water status. Turgor of root cortical cells was then measured using a pressure probe. In seedlings grown in sand cores for 1 d, impedance had little effect on turgor, but in seedlings grown in the sand cores for 2 d, impedance increased turgor by 0.18 MPa in the apical 6 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号