首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bronchial mucins from patients suffering from CF (cystic fibrosis) exhibit glycosylation alterations, especially increased amounts of the sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3]GlcNAc-R) and 6-sulfo-sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3][SO(3)H-6]GlcNAc-R) terminal structures. These epitopes are preferential receptors for Pseudomonas aeruginosa, the bacteria responsible for the chronicity of airway infection and involved in the morbidity and early death of CF patients. However, these glycosylation changes cannot be directly linked to defects in CFTR (CF transmembrane conductance regulator) gene expression since cells that secrete airway mucins express no or very low amounts of the protein. Several studies have shown that inflammation may affect glycosylation and sulfation of various glycoproteins, including mucins. In the present study, we show that incubation of macroscopically healthy fragments of human bronchial mucosa with IL-6 (interleukin-6) or IL-8 results in a significant increase in the expression of alpha1,3/4-fucosyltransferases [FUT11 (fucosyltransferase 11 gene) and FUT3], alpha2-6- and alpha2,3-sialyltransferases [ST3GAL6 (alpha2,3-sialyltransferase 6 gene) and ST6GAL2 (alpha2,6-sialyltransferase 2 gene)] and GlcNAc-6-O-sulfotransferases [CHST4 (carbohydrate sulfotransferase 4 gene) and CHST6] mRNA. In parallel, the amounts of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes at the periphery of high-molecular-mass proteins, including MUC4, were also increased. In conclusion, our results indicate that IL-6 and -8 may contribute to the increased levels of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes on human airway mucins from patients with CF.  相似文献   

2.
Higai K  Miyazaki N  Azuma Y  Matsumoto K 《FEBS letters》2006,580(26):6069-6075
We previously demonstrated that human hepatocellular carcinoma-derived HuH-7 cells stimulated with interleukin-1beta (IL-1beta) produce alpha(1)-acid glycoprotein (AGP) with increased amounts of sialyl Lewis X (sLeX) antigen, although the mechanism remained obscure. Here, we report our investigation of the mechanism. sLeX expression on HuH-7 cells was induced 2.5 times more after 48 h stimulation with 100 U/mL IL-1 beta compared with control, as indicated by anti-sLeX antibody binding. Furthermore, expression of 2,3-sialylated N-acetyllactosamine increased gradually up to 48 h after IL-1 beta stimulation; this preceded the increase in sLeX expression. Increases in alpha 2,3-sialyltransferase activity also preceded increases in alpha1,3-fucosyltransferase activity. Furthermore, mRNA levels of ST3Gal IV, FUT IV and VI in HuH-7 cells stimulated with IL- 1beta were increased at 2-4 h, while increases in FUT VI mRNA level occurred gradually after 24 h. IL-1 beta-induced sLeX expression on HuH-7 cells was suppressed by transfection of gene-specific small interference RNAs against FUT VI and ST3Gal IV but not against FUT IV and ST3Gal III. These data results that IL-1 beta induces expression of sLeX on HuH-7 cells by enhanced expression of FUT VI and ST3Gal IV gene.  相似文献   

3.
4.
Bronchial mucins were purified from the sputum of 14 patients suffering from cystic fibrosis and 24 patients suffering from chronic bronchitis, using two CsBr density-gradient centrifugations. The presence of DNA in each secretion was used as an index to estimate the severity of infection and allowed to subdivide the mucins into four groups corresponding to infected or noninfected patients with cystic fibrosis, and to infected or noninfected patients with chronic bronchitis. All infected patients suffering from cystic fibrosis were colonized by Pseudomonas aeruginosa. As already observed, the mucins from the patients with cystic fibrosis had a higher sulfate content than the mucins from the patients with chronic bronchitis. However, there was a striking increase in the sialic acid content of the mucins secreted by severely infected patients as compared to noninfected patients. Thirty-six bronchial mucins out of 38 contained the sialyl-Lewis x epitope which was even expressed by subjects phenotyped as Lewis negative, indicating that at least one alpha1,3 fucosyltransferase different from the Lewis enzyme was involved in the biosynthesis of this epitope. Finally, the sialyl-Lewis x determinant was also overexpressed in the mucins from severely infected patients. Altogether these differences in the glycosylation process of mucins from infected and noninfected patients suggest that bacterial infection influences the expression of sialyltransferases and alpha1,3 fucosyltransferases in the human bronchial mucosa.  相似文献   

5.
6.
The pCMV4 plasmid containing the cancer-promoting gene, c-erbB2/neu, was cotransfected into the human hepatocarcinoma cell line 7721 with the pcDNA3 vector, which contains the 'neo' selectable marker. Several clones showing stable expression of c-erbB2/neu were established and characterized by determination of c-erbB2/neu mRNA and its encoded protein p185. Expression of Lewis antigens and alpha1,3-fucosyltransferases and the biological behavior of 7721 cells after c-erbB2/neu transfection were studied using mock cells transfected with the vectors pCMV4 and pcDNA3 as controls. SLe(x) expression on the surface of mock cells was high, whereas expression of SDLe(x), Lex and SLe(a) was absent or negligible. This is compatible with the abundant expression of alpha1,3-fucosyltransferase VII, very low expression of alphafucosyltransferase III/VI, and almost absent expression of alpha1,3-fucosyltransferase IV in the mock cells. After transfection of c-erbB2/neu, expression of SLe(x) and alpha1,3-fucosyltransferase VII were simultaneously elevated, but that of alphafucosyltransferase III/VI was not altered. The expression of both SLe(x) and alpha1,3-fucosyltransferase VII correlated positively with the expression of c-erbB2/neu in different clones, being highest in clone 13, medium in clone 6, and lowest in clone 7. In addition, the adhesion of 7721 cells to human umbilical vein endothelial cells (HUVECs) or P-selectin, as well as cell migration and invasion, were increased in c-erbB2/neu-transfected cells. These increases also correlated positively with the expression intensities of c-erbB2/neu, SLe(x) and alpha1,3-fucosyltransferase VII in the different clones, whereas cell adhesion to fibronectin correlated negatively with these variables. mAbs to SLe(x) (KM93) and SDLe(x) (FH6) significantly and slightly, respectively, abolished cell adhesion to HUVECs or P-selectin and cell migration and invasion. mAbs to SDLe(x) and SLe(a) did not suppress cell adhesion to HUVECs nor inhibit cell migration and invasion. Transfection of alpha1,3-fucosyltransferase VII cDNA into 7721 cells showed similar results to transfection of c-erbB2/neu, and the increased adhesion to HUVECs, cell migration, and invasion were also inhibited significantly by KM93 and slightly by FH6. These results indicate that expression of alpha1,3-fucosyltransferase VII and its specific product, SLe(x), and their capacity for cell adhesion, migration and invasion are closely related. Therefore, the c-erbB2/neu gene is proposed to be a metastasis-promoting gene, and its effects are at least partially mediated by the increased expression of alpha1,3-fucosyltransferase VII and SLe(x).  相似文献   

7.
The human FUT7 gene codes for the alpha1,3-fucosyltransferase VII (Fuc-TVII), which is involved in the biosynthesis of the sialyl Lewis x (SLe(x)) epitope on human leukocytes. The FUT7 gene has so far been considered to be monomorphic. Neutrophils isolated from patients with ulcerative colitis were examined for apparent alterations in protein glycosylation patterns by Western blot analysis using monoclonal antibodies directed against SLe(x) and SLe(x)-related epitopes. One individual showed lower levels of SLe(x) expression and an elevated expression of CD65s compared to controls. The coding regions of the FUT7 gene from this individual were cloned, and a G329A point mutation (Arg(110) --> Gln) was found in one allele, whereas the other FUT7 allele was wild type. No Fuc-TVII enzyme activity was detected in COS-7 cells transiently transfected with the mutated FUT7 construct. The FUT7 Arg(110) is conserved in all previously cloned vertebrate alpha 1,3-fucosyltransferases. Polymerase chain reaction followed by restriction enzyme cleavage was used to screen 364 unselected Caucasians for the G329A mutation, and a frequency of < or =1% for this mutation was found (3 heterozygotes). Genetic characterization of the family members of one of the additional heterozygotes identified one individual carrying the G329A mutation in both FUT7 alleles. Peripheral blood neutrophils of this homozygously mutated individual showed a lowered expression of SLe(x) and an elevated expression of CD65s when analyzed by Western blot and flow cytometry. The homozygous individual was diagnosed with ulcer disease, non-insulin-dependent diabetes, osteoporosis, spondyloarthrosis, and Sj?gren's syndrome but had no history of recurrent bacterial infections or leukocytosis.  相似文献   

8.
Alignment of 15 vertebrate alpha1,3-fucosyltransferases revealed one arginine conserved in all the enzymes employing exclusively type 2 acceptor substrates. At the equivalent position, a tryptophan was found in FUT3-encoded Lewis alpha1,3/1,4-fucosyltransferase (Fuc-TIII) and FUT5-encoded alpha1,3/1,4-fucosyltransferase, the only fucosyltransferases that can also transfer fucose in alpha1, 4-linkage. The single amino acid substitution Trp111 --> Arg in Fuc-TIII was sufficient to change the specificity of fucose transfer from H-type 1 to H-type 2 acceptors. The additional mutation of Asp112 --> Glu increased the type 2 activity of the double mutant Fuc-TIII enzyme, but the single substitution of the acidic residue Asp112 in Fuc-TIII by Glu decreased the activity of the enzyme and did not interfere with H-type 1/H-type 2 specificity. In contrast, substitution of Arg115 in bovine futb-encoded alpha1, 3-fucosyltransferase (Fuc-Tb) by Trp generated a protein unable to transfer fucose either on H-type 1 or H-type 2 acceptors. However, the double mutation Arg115 --> Trp/Glu116 --> Asp of Fuc-Tb slightly increased H-type 1 activity. The acidic residue adjacent to the candidate amino acid Trp/Arg seems to modulate the relative type 1/type 2 acceptor specificity, and its presence is necessary for enzyme activity since its substitution by the corresponding amide inactivated both Fuc-TIII and Fuc-Tb enzymes.  相似文献   

9.
10.
In order to evaluate the importance of an extracellular matrixon mucin secretion, human bronchial epithelial cells were culturedfor 3 weeks on either plastic or type I collagen. By metabolicallylabeling cells with tritiated glucosamine, we found that cellsgrown on collagen secreted more radiolabeled mucins than cellsgrown on plastic, and their amount increased from week 1 toweek 3 in both conditions. Secreted mucins were also assayedby ELISA using an anti-Lewis b monoclonal antibody. The amountof immunoreactive mucins secreted by cells grown on plasticduring the first 2 weeks of culture was much lower than thatof cells grown on collagen. This indicated that the expressionof the Lewis b antigen on mucins secreted by cells grown onplastic was very low during the first 2 weeks of radiolabelingand increased during the third week to reach levels that werecomparable to the levels of expression by cells grown on collagen.The expression of the Lewis b epitope and the mRNA level offucosyltransferases FUT2 and FUT3, which are involved in Lewisb synthesis, varied in a similar way. The two fucosyltransferaseswere expressed later in cells cultured on plastic than in cellsgrown on collagen. These results suggest that growth conditionsinfluence both the biosynthesis and secretion of respiratorymucins. mucin secretion fucosyltransferase human bronchial cells Lewis b  相似文献   

11.
12.
13.
14.
15.
Inflammation of stomach mucosa has been postulated as initiator of gastric carcinogenesis and the presence of pro-inflammatory cytokines can regulate specific genes involved in this process. The cellular expression pattern of glycosyltransferases and Lewis antigens detected in the normal mucosa changed during the neoplassic transformation. The aim of this work was to determine the regulation of specific fucosyltransferases and sialyltransferases by IL-1β and IL-6 pro-inflammatory cytokines in MKN45 gastric cancer cells. IL-1β induced significant increases in the mRNA levels of FUT1, FUT2 and FUT4, and decreases of FUT3 and FUT5. In IL-6 treatments, enhanced FUT1 and lower FUT3 and FUT5 mRNA expression were detected. No substantial changes were observed in the levels of ST3GalIII and ST3GalIV. The activation of FUT1, FUT2 and FUT4 by IL-1β is through the NF-κB pathway and the down-regulation of FUT3 and FUT5 by IL-6 is through the gp130/STAT-3 pathway, since they are inhibited specifically by panepoxydone and AG490, respectively. The levels of Lewis antigens after IL-1β or IL-6 stimulation decreased for sialyl-Lewis x, and no significant differences were found in the rest of the Lewis antigens analyzed, as it was also observed in subcutaneous mice tumors from MKN45 cells treated with IL-1β or IL-6. In addition, in 61 human intestinal-type gastric tumors, sialyl-Lewis x was highly detected in samples from patients that developed metastasis. These results indicate that the expression of the fucosyltransferases involved in the synthesis of Lewis antigens in gastric cancer cells can be specifically modulated by IL-1β and IL-6 inflammatory cytokines.  相似文献   

16.
Production of O-linked oligosaccharides that interact with selectins to mediate cell-cell adhesion occurs in one segment of a branched glycan biosynthesis network. Prior efforts to direct the branched pathway towards selectin-binding oligosaccharides by amplifying enzymes in this branch of the network have had limited success, suggesting that metabolic engineering to simultaneously inhibit the competing pathway may also be required.We report here the partial cloning of the CMP-sialic, acid:Galbeta1,3GalNAcalpha2,3-sialyltransferase (ST3Gal I) gene from Chinese hamster ovary (CHO) cells and the simultaneous inhibition of expression of CHO cell ST3Gal I gene and overexpression of the human UDP-GlcNAc:Galbeta1,3GalNAc-R beta1,6-N-acetylglucosaminyltransferase (C2GnT) gene. A tetracycline-regulated system adjoined to tricistronic expression technology allowed "one-step" transient manipulation of multiple enzyme activities in the O-glycosylation pathway of a previously established CHO cell line already engineered to express alpha1,3-fucosyltransferase VI (alpha1,3-Fuc-TVI). Tetracycline-regulated co-expression of a ST3Gal I fragment, cloned in the antisense orientation, and of C2GnT cDNA resulted in inhibition of the ST3Gal I enzymatic activity and increase in C2GnT activity which varied depending on the extent of tetracycline reduction in the cell culture medium. This simultaneous regulated inhibition and activation of the two key enzyme activities in the O-glycosylation pathway of mammalian cells is an important addition to the metabolic engineering field.  相似文献   

17.
In the animal kingdom the enzymes that catalyze the formation of alpha1,4 fucosylated-glycoconjugates are known only in apes (chimpanzee) and humans. They are encoded by FUT3 and FUT5 genes, two members of the Lewis FUT5-FUT3-FUT6 gene cluster, which had originated by duplications of an alpha3 ancestor gene. In order to explore more precisely the emergence of the alpha1,4 fucosylation, new Lewis-like fucosyltransferase genes were studied in species belonging to the three main primate groups. Two Lewis-like genes were found in brown and ruffed lemurs (prosimians) as well as in squirrel monkey (New World monkey). In the latter, one gene encodes an enzyme which transfers fucose only in alpha1,3 linkage, whereas the other is a pseudogene. Three genes homologous to chimpanzee and human Lewis genes were identified in rhesus macaque (Old World monkey), and only one encodes an alpha3/4-fucosyltransferase. The ability of new primate enzymes to transfer fucose in alpha1,3 or alpha1,3/4 linkage confirms that the amino acid R or W in the acceptor-binding motif "HH(R/W)(D/E)" is required for the type 1/type 2 acceptor specificity. Expression of rhesus macaque genes proved that fucose transfer in alpha1,4 linkage is not restricted to the hominoid family and may be extended to other Old World monkeys. Moreover, the presence of only one enzyme supporting the alpha1,4 fucosylation in rhesus macaque versus two enzymes in hominoids suggests that this function occurred twice independently during primate evolution.  相似文献   

18.
Dupuy F  Germot A  Julien R  Maftah A 《Glycobiology》2004,14(4):347-356
All vertebrate alpha3- and alpha3/4-FUTs possess the characteristic acceptor-binding motif VxxHH(W/R)(D/E). FUT6 and FUTb enzymes, harboring R in the acceptor-binding motif, transfer fucose in alpha1,3 linkage, whereas FUT3 and FUT5 enzymes with W at the candidate position can also transfer fucose in alpha1,4 linkage-FUT3 being more efficient than FUT5. To determine the involvement of the W/R residue in acceptor recognition, we produced 34 variants of human FUT3, FUT5, FUT6, and ox FUTb Lewis enzymes. Among the FUT3 variants where W(111) was replaced by the other amino acids, only enzymes with an aromatic residue at the candidate position kept about 50% of alpha1,4 activity and showed no changes in K(m) values for GDP-Fuc donor and H-type 1 acceptor substrates. All other substitutions produced enzymes with less than 20% of the alpha1,4 activity. Thus the ability of alpha3/4-FUTs to recognize type 1 substrates involves the aromatic character of W in the acceptor-binding domain. The alpha1,3 activity of FUT6 and FUTb significantly decreased when their R residue was substituted by basic or charged residues. Moreover, FUT3 and FUT5 variants with W-->R substitution had a better affinity for H-type 2 substrate and higher alpha1,3 activities. Therefore the optimal fucose addition in alpha1,3 linkage requires the R residue in the acceptor-binding motif of Lewis FUTs.  相似文献   

19.
Brito C  Kandzia S  Graça T  Conradt HS  Costa J 《Biochimie》2008,90(9):1279-1290
The alpha3-fucosyltransferase IX (FUT9) catalyses the transfer of fucose in an alpha3 linkage onto terminal type II (Galbeta4GlcNAc) acceptors, the final step in the biosynthesis of the Lewis(x) (Le(x)) epitope, in neurons. In this work, FUT9 cloned from NT2N neurons and overexpressed in HeLa cells (FUT9wt), was found to efficiently fucosylate asialoerythropoietin (asialoEPO), and bovine asialofetuin, but not sialylated EPO. Analysis by HPAEC-PAD and MALDI/TOF-MS revealed predominantly mono-fucosylation by FUT9wt of type II di-, tri- and tetraantennary N-glycans with proximal fucose, with and without N-acetylactosamine repeats from asialoEPO. Minor amounts of difucosylated structures were also found. The results suggested that FUT9 could fucosylate Le(x) carrier-glycoproteins in neurons. Furthermore, FUT9wt was found to be activated by Mn(2+) and it was capable of synthesizing Le(a), although to a lesser extent than Le(x) and Le(y). In vivo, HeLa cells transfected with FUT9wt expressed de novo Le(x), as detected by immunofluorescence microscopy. FUT9 was found to be a trans-Golgi and trans-Golgi network (TGN) glycosyltransferase from confocal immunofluorescence co-localization with the markers of the secretory pathway beta4-galactosyltransferase (trans-Golgi and TGN) and TGN-46 (TGN). Deletion of the cytoplasmic domain caused a shift to the cis-Golgi, thus suggesting that information for intra-Golgi localization is contained within the cytoplasmic domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号