首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Earlier studies identified the role of bta-mir-2898 in bovine. Our earlier study identified that, bta-mir-2898 can be over expressed in crossbred cattle during heat stress. Nevertheless the differential expression of bta-mir-2898 among native vs crossbred cattle during summer stress along with it's correlation with different heat shock proteins (HSPs) is not yet studied. In the present context, we studied the differential expression of bta-mir-2898 among Frieswal (Bos indicus x Bos taurus) and Sahiwal (Bos indicus) breeds of cattle during a range of environmental air temperatures and further investigated the correlation of bta-mir-2898 with different HSPs (HSP70, HSP90, HSP60. HSF, HSPB8 and HSP27). It was observed that, at peak air temperature the relative miRNA expression level (p < 0.05) of bta-mir-2898 was 3.4 ± 0.41 and 0.79 ± 0.22 among Frieswal and Sahiwal, respectively. We also observed significant levels (p < 0.05) of mRNA abundance of HSP70, HSP90, HSPB8 and HSP27 among the breeds. In all the cases Sahiwal found to exhibited higher level of HSPs in comparison to Frieswal. Studies revealed that the expression profile of bta-mir-2898 was negatively correlated with the expression of all the HSPs during thermal stress in post anti-mir2898 treated PBMC invitro cultured model originated from both Frieswal and Sahiwal cattle breeds. However, significantly (p < 0.05) higher negative correlations were observed between bta-mir-2898 and HSP70, HSP60 and HSPB8. Present findings highlighted the preliminary role of overexpressed bta-mir-2898 in cattle during thermal stress and its impact on different heat shock proteins.  相似文献   

2.
3.
4.
The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98–99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.  相似文献   

5.
6.
The erstwhile developed temperature-humidity index (THI) has been popularly used to indicate heat stress in dairy cattle and often in buffaloes. However, scientific literature suggests differences in thermotolerance and physiological responses to heat stress between cattle and buffalo. Therefore, THI range used to indicate degree of heat stress (mild, moderate, and severe) in cattle should be recalibrated for indicating heat stress in buffaloes. The present study was carried out to delineate THI range to indicate onset and severity of heat stress in buffaloes based on physiological, biochemical, and expression profiling of heat shock response (HSR) genes in animals at different THI. The result indicated early onset of heat stress in buffaloes as compared to cattle. Physiological and biochemical parameters indicated onset of mild signs of heat stress in buffaloes at THI 68-69. Significant deviation in these parameters was again observed at THI range 73-76. At THI 77-80, the physiological and biochemical responses of animals were further intensified indicating extreme alteration in homeostasis. The in vivo expression profiling of HSR genes indicated that members of Hsp70 gene family are expressed in a temporal pattern over different THIs, whereas expressions of Hsf genes were evident during intense heat stress. Overall, the study established that amplitude of heat shock response and THI range for indicating severity of thermal stress for buffaloes are not in unison to cattle. The study also suggests skin temperature of the poll region could be used as non-invasive tool for monitoring heat stress in dairy buffaloes.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01209-1.  相似文献   

7.

Background

Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits.

Results

We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more “loss” events than both “gain” and “both” ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits.

Conclusions

The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle’s evolution and breeding researches.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-480) contains supplementary material, which is available to authorized users.  相似文献   

8.
The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at −21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48 h cultured PBMC were subjected to assorted levels of exposures viz. 37 °C, 42 °C to impose heat stress and 42 °C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (P<0.05) higher in Karan Fries than the Sahiwal cows. Both the breeds showed maximum expression of HSP on the day of parturition, more so in KF than Sahiwal. There was a significant (P<0.05) difference in the HSP mRNA expression at different levels of exposure. Zinc treatment to heat stressed PBMC caused a significant (P<0.05) down regulation of HSP. For immune status, anti-inflammatory cytokine, IL-10 in the culture supernatant was accessed. The IL-10 was significantly (P<0.05) higher in Karan Fries (168.18±14.09 pg/ml) than the Sahiwal cows (147.24±11.82 pg/ml). The IL-10 concentration was highest on the day of calving. Zinc treatment reduced the IL-10 concentration. From the study, it could be concluded that the zinc supplementation in heat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock.  相似文献   

9.
The aim of this study was to evaluate the effects of summer and winter seasons on antioxidant status, body reserve mobilization and biomarkers of stress in Hariana and Sahiwal cows. Twelve lactating cows (six of each Hariana and Sahiwal cows) were included in summer (May to July) and winter season (November to January) study. Microclimatic observations were recorded on daily basis during the experimental period. In both seasons, blood samples were collected at fortnightly intervals for analysis of total antioxidant activity, non-esterified fatty acids (NEFA), β-Hydroxybutyric acid (BHBA), heat shock protein 70 and 90 (HSP70 and HSP90). Antioxidant activity reduced significantly (p < 0.05) in Hariana cattle during summers as compared to winters; whereas, seasonal variation exerts no effect on antioxidant activity in Sahiwal. Blood NEFA concentration was similar among both the breeds over both the seasons but reduced significantly (p < 0.05) during summer season as compared to winters in both the breeds. BHBA concentration was significantly higher (p < 0.05) in Hariana cows than Sahiwal cows during winters, however, no effect on BHBA level was observed during summer season in both the breeds. Significantly, lower plasma cortisol level (p < 0.05) was found during winter season in Sahiwal as well as Hariana cows. Further, Sahiwal exhibited lower plasma cortisol as compared to Hariana in both the seasons. HSP 70 and 90 showed non-significant differences between breeds within both the seasons. However, significantly, lower plasma HSP 70 levels (p < 0.05) were reported during winter season in Sahiwal as well as in Hariana cows. Results of present study revealed that indigenous Sahiwal is more heat tolerant as compared to Hariana breed.  相似文献   

10.
11.
12.
Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.  相似文献   

13.
Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.  相似文献   

14.
Host–pathogen interactions in plants are complex and potentially influenced by heat shock/stress (HS). Host HS proteins (HSPs) induced prior to bacterial exposure may facilitate the folding of newly synthesized defense proteins and promote incompatible host–pathogen interactions. We hypothesized that a non-lethal HS, with recovery, promotes protection of Nicotiana tabacum during subsequent exposure to avirulent soilborne necrotrophic pathogen Ralstonia solanacearum. The objective of this study included investigating the effects of HS with or without recovery on the outcome of bacterial exposure to a virulent and avirulent biovar of R. solanacearum in N. tabacum cell suspensions. This was assessed by quantifying host Hsp70/Hsc70 levels, mitochondrial electron (e) transport activity as a marker of viability, and phosphatidylserine externalization and DNA fragmentation as markers of apoptosis. Our findings support the hypothesis that HS, with recovery, promotes protection of N. tabacum during subsequent exposure to R. solanacearum, suggesting a role for Hsp70/Hsc70 in the observed protection of e transport, increased apoptosis, and DNA fragmentation.  相似文献   

15.
16.
Cutaneous evaporation is the main avenue by which cattle dissipate heat via the involvement of sweat glands and other skin components. The difference in skin morphology between B. indicus and B. taurus has been recognized, as well as differences in their ability to tolerate heat. The objective of this study was to compare skin morphology between B. indicus, B. taurus, and their crossbreds. Skin samples of Sahiwal (B. indicus) (n?=?10, reddish brown skin) and Holstein Friesian (HF) (B. taurus) (n?=?10, black and white skin) and crossbred of HF75% (n?=?10, black and white skin) and HF87.5 % (n?=?10, black and white skin) were biopsied for histological study, followed by measurement of skin components. The results indicated that breed significantly affected sweat gland morphology. The shape of the sweat gland, as indicated by the ratio of length/diameter, in Sahiwal was baggier in shape compared to HF (5.99 and 9.52) while values for crossbreds were intermediate (7.82, 8.45). The density and volume of sweat glands in Sahiwal (1,058 glands/cm2; 1.60 μ3?×?10?6) were higher than in HF (920 glands/cm2; 0.51 μ3x10?6) and crossbreds, both HF 75 % (709 glands/cm2; 0.68 μ3?×?10?6) and HF 87.5 % (691 glands/cm2; 0.61 μ3?×?10?6) respectively. However, capillary surface area was greater for HF (2.07 cm2) compared to Sahiwal (1.79 cm2); accordingly, the lower genetic fraction of HF in crossbred cattle showed less capillary surface area (1.83 and 1.9 cm2 for HF75% and HF87.5 %) (P?<?0.01). Nerve density was not significantly different between Sahiwal and HF but was higher in the crossbred (P?<?0.01) cattle. Moreover, the effect of skin color (black and white) was evaluated and it was found that there was an interaction (P?<?0.01) between breed and skin color on the skin components. This study reveals that there are differences in skin morphology among B. indicus, B. taurus and their crossbreds, with these differences being more or less related to the genetic fraction of HF. This may imply that capability for cutaneous evaporative heat loss and tolerance to heat in crossbred cattle could be related to skin morphology.  相似文献   

17.
Single-nucleotide polymorphisms (SNPs) in the coding and untranslated regions of heat shock 70 kDa protein 1A (HSP70A1A), an inducible molecular chaperone that is responsible for cellular protection against heat stress, have been reported as being associated with heat tolerance. A fragment of the HSP70A1A gene was amplified in Chinese Holstein cattle and eight novel mutations were found. We performed comprehensive linkage disequilibrium (LD) and haplotype analyses of the eight SNPs of the HSP70A1A gene and examined their involvement in heat resistance in 600 Chinese Holstein cattle. Our results revealed the presence of significant differences between individuals carrying haplotype 1 and those without haplotype 1 for most of the heat-tolerance traits. Haplotype 1 increased the risk of heat stress; however, association analysis of its combination with haplotype 2 showed the lowest rectal temperature and red blood cell K+ level, moderate respiratory rate, and the highest red blood cell NKA level, suggesting a heterozygote advantage in the penetration of the phenotype. Protein expression levels in white blood cells among haplotype combinations further confirmed the hypothesis that heterozygotes for haplotypes 1 and 2 are more sensitive to heat stress. We presume that these mutations may be useful in the future as molecular genetic markers to assist selection for heat tolerance in cattle.  相似文献   

18.
19.
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone found in all species except for Archaea, which is required not only for stress tolerance but also for normal development. Recently, it was reported that HSP83, one member of the cytosolic HSP90 family, contributes to oogenesis and responds to heat resistance in Tribolium castaneum. Here, a novel ER-based HSP90 gene, Tchsp90, has been identified in T. castaneum. Phylogenetic analysis showed that hsp90s and hsp83s evolved separately from a common ancestor but that hsp90s originated earlier. Quantitative real-time polymerase chain reaction illustrated that Tchsp90 is expressed in all developmental stages and is highly expressed at early pupa and late adult stages. Tchsp90 was upregulated in response to heat stress but not to cold stress. Laval RNAi revealed that Tchsp90 is important for larval/pupal development. Meanwhile, parental RNAi indicated that it completely inhibited female fecundity and partially inhibited male fertility once Tchsp90 was knocked down and that it will further shorten the lifespan of T. castaneum. These results suggest that Tchsp90 is essential for development, lifespan, and reproduction in T. castaneum in addition to its response to heat stress.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-013-0487-y) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号