首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antiserum generated to the soluble form of the rat brain puromycin-sensitive enkephalin-degrading aminopeptidase was used to determine the tissue distribution of the soluble and membrane-associated forms of this enzyme. All tissues examined contained significant levels of the soluble enzyme form, with this enzyme accounting for greater than 90% of the arylamidase activity in brain, heart, and skeletal muscle. Native gel electrophoresis coupled with activity staining as well as inhibition studies were used to confirm the presence of this enzyme in various tissues. Serum was found not to contain this particular aminopeptidase. In contrast to the results obtained with the soluble enzyme form, brain was the only tissue found to contain the membrane-associated enzyme form. Although all tissues contained membrane-associated aminopeptidase activity only the brain enzyme could be maintained in solution in the absence of detergent. In addition, the brain membrane-associated enzyme could be distinguished from the membrane-associated aminopeptidase activity in other tissues on the basis of its sensitivity to inhibition by puromycin.  相似文献   

2.
The relationship between soluble and membrane choline acetyltransferase (ChAT) was studied. Differential solubilization of rat and human brain yielded ChAT in the soluble and membrane fractions. The addition of 1% Triton X-100 to membrane fractions resulted in a release of ChAT. A comparable release of lactate dehydrogenase was also observed. The Triton released ChAT and soluble ChAT from rat and human brain were efficiently purified by immuno-affinity chromatography. A single molecular weight of 68,000 was observed for both forms of rat and human brain ChAT. Epitope maps produced from both forms of human brain ChAT were identical. It is concluded that Triton release ChAT is identical to soluble ChAT and simply represents occluded soluble ChAT.  相似文献   

3.
A specific enzyme assay for aminopeptidase M (APM) activity on rat brain membranes has been developed through selective use of enzyme inhibitors. Amastatin was the most potent inhibitor (amastatin > actinonin > MDL73347 > bestatin) for purified porcine kidney APM, giving 98% inhibition at a 6 microM concentration, while actinonin, yielded only 57% inhibition at this concentration. Puromycin (10 microM) was used to inhibit puromycin-sensitive aminopeptidase activity in the rat brain membrane preparation. Puromycin (10 microM) had only a slight effect on the Km of porcine kidney APM, and had negligible effect on APM velocity at the high substrate concentration (2 mM) used in the APM assay. The assay produced a linear accumulation of product for increasing amount of rat brain membranes used, and for increasing incubation time. The Km of APM on rat brain membranes for L-Leucine-p-nitroanilide (0.383 mM) was similar to the Km of purified porcine kidney APM (0.558 mM). APM-activity, involved in the metabolism of several biologically important neuropeptides in different brain regions, can be specifically measured with this enzyme assay.  相似文献   

4.
In order to elucidate the role of aminopeptidases in enkephalin catabolism in rat brain, the local distribution of two types of cerebral cellular membrane aminopeptidases (puromycin-sensitive and puromycin-insensitive ones) and of the enkephalin system marker, enkephalinase A, was studied. It was found that the distribution patterns of the former enzymes differ essentially from that of enkephalinase A. Study of coupling between the enzymatic activities in different regions of rat brain revealed a strong correlation between the activities of puromycin-insensitive aminopeptidase and enkephalinase A in midbrain (including hypothalamus). It was supposed that in midbrain the role of aminopeptidase M in intrasynaptic inactivation of enkephalins is much more conspicuous than in other regions of rat brain. The puromycin-sensitive aminopeptidase activity does not seem to play a role in enkephalin catabolism.  相似文献   

5.
The property of solutions of Triton X-114 to separate into detergent-rich and detergent-poor phases at 30 degrees C has been exploited to investigate the identities of the aminopeptidases in synaptic membrane preparations from pig striatum. When titrated with an antiserum to aminopeptidase N (EC 3.4.11.2), synaptic membranes solubilized with Triton X-100 revealed that this enzyme apparently comprises no more than 5% of the activity releasing tyrosine from [Leu]enkephalin. When assayed in the presence of puromycin, this proportion increased to 20%. Three integral membrane proteins were fractionated by phase separation in Triton X-114. Aminopeptidase activity, endopeptidase-24.11 and peptidyl dipeptidase A partitioned predominantly into the detergent-rich phase when kidney microvillar membranes were so treated. However, only 5.5% of synaptic membrane aminopeptidase activity partitioned into this phase, although the other peptidases behaved predictably. About half of the aminopeptidase activity in the detergent-rich phase could now be titrated with the antiserum, showing that aminopeptidase N is an integral membrane protein of this preparation. Three aminopeptidase inhibitors were investigated for their ability to discriminate between the different activities revealed by these experiments. Although amastatin was the most potent (IC50 = 5 X 10(-7) M) it failed to discriminate between pure kidney aminopeptidase N, the total activity of solubilized synaptic membranes and that in the Triton X-114-rich phase. Bestatin was slightly more potent for total activity (IC50 = 6.3 X 10(-6) M) than for the other two forms (IC50 = 1.6 X 10(-5) M). Puromycin was a weak inhibitor, but was more selective. The activity of solubilized membranes was more sensitive (IC50 = 1.6 X 10(-5) M) than that of the pure enzyme or the Triton X-114-rich phase (IC50 = 4 X 10(-4) M). We suggest that the puromycin-sensitive aminopeptidase activity that predominates in crude synaptic membrane preparations may be a cytosolic contaminant or peripheral membrane protein rather than an integral membrane component. Aminopeptidase N may contribute to the extracellular metabolism of enkephalin and other susceptible neuropeptides in the brain.  相似文献   

6.
The regional, cellular and subcellular distribution patterns of aminopeptidase N and dipeptidyl aminopeptidase IV were examined in rat small intestine. Aminopeptidase N of brush border membrane had maximal activity in the upper and middle intestine, while dipeptidyl aminopeptidase IV had a more uniform distribution profile with relatively high activity in the ileum. Along the villus and crypt cell gradient, the activity of both enzymes was maximally expressed in the mid-villus cells. However there was substantial dipeptidyl aminopeptidase IV activity in the crypt cells. Both enzymes were primarily associated with brush border membranes in all segments, however, in the proximal intestine, a significant amount of dipeptidyl aminopeptidase IV activity was associated with the cytosol fraction. The cytosol and brush border membrane forms of dipeptidyl aminopeptidase IV were immunologically identical and had the same electrophoretic mobility on disc gels. In contrast, the soluble and brush border membrane-bound forms of aminopeptidase N were immunologically distinct. When the total amount of aminopeptidase N and dipeptidyl aminopeptidase IV was determined by competitive radioimmunoassay, there were no regional or cellular differences in specific activity (enzyme activity/mg of enzyme protein) of either enzyme in brush border membrane and homogenate. The specific activity of both enzymes in a purified Golgi membrane fraction as measured by radioimmunoassay was about half that of the brush border membrane fraction. These results suggest that (1) aminopeptidase N and dipeptidyl aminopeptidase IV have different regional, cellular and subcellular distribution patterns; (2) there are enzymatically inactive forms of both enzymes present in a constant proportion to active molecules and that (3) a two-fold activation of precursor enzyme forms occurs during transfer from the Golgi membranes to the brush border membranes.  相似文献   

7.
Human urine contains a soluble form of glucocerebrosidase, an enzyme associated with the lysosomal membrane in cells and tissues. Urinary glucocerebrosidase is identical to the enzyme extracted from tissues with respect to the following parameters: Km for natural and artificial substrates, inhibition by conduritol B-epoxide, and stimulation by taurocholate. The enzyme is greater than 90% precipitable by polyclonal anti-(placental glucocerebrosidase) antiserum. Upon isoelectric focussing of urinary glucocerebrosidase multiple peaks of activity were observed. Partial deglycosylation (removal of sialic acid, N-acetylglucosamine and galactose) of the urinary enzyme increased the isoelectric point to a value identical to that of the main form found after partial deglycosylation of the placental enzyme. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate followed by immunoblotting, the immunopurified urinary enzyme shows the same molecular mass forms as the enzyme immunopurified from brain and kidney. In placenta the apparent molecular mass is somewhat higher but upon removal of sialic acid, N-acetylglucosamine and galactose the urinary and the placental enzyme show identical molecular masses of 57 kDa. We conclude that the enzymes extracted from urine and tissue are identical and that differences in apparent molecular mass and isoelectric point are probably due to heterogeneity in the oligosaccharide moieties of the molecules.  相似文献   

8.
A novel neutral aminopeptidase (NAP-2) was found exclusively in the rat central nervous system (CNS). It was separated from the ubiquitous puromycin-sensitive aminopeptidase (PSA) and the neuron-specific aminopeptidase (NAP) by an automated FPLC-aminopeptidase analyzer. The activity of the neuronal aminopeptidase enriched in the synaptosomes is different from NAP and PSA in distribution and during brain development. The enzyme was purified 2230-fold to apparent homogeneity from rat brain cytosol with 4% recovery by ammonium sulfate fractionation, followed by column chromatography successively on Phenyl-Sepharose, Q-Sepharose, Sephadex G-200, and Mono Q. The single-chain enzyme with a molecular mass of 110kDa has an optimal pH of 7.0 and a pI of 5.6. It splits beta-naphthylamides of amino acid with aliphatic, polar uncharged, positively charged, and aromatic side chain. Leucyl beta-naphthylamide (Leu betaNA) is the best substrate with the highest hydrolytic coefficiency followed by Met betaNA=Arg betaNA=Lys betaNA>Ala betaNA>Tyr betaNA>Phe betaNA. The cysteine-, metallo-, glyco-aminopeptidase releases the N-terminal Tyr from Leu-enkephalin with a K(m) 82microM and a k(cat) of 1.08s(-1), and Met-enkephalin with a K(m) of 106microM and a k(cat) of 2.6s(-1). The puromycin-sensitive enzyme is most susceptible to amastatin with an IC(50) of 0.05microM. The data indicate that the enzyme is a new type of NAP found in rodent. Its possible function in neuron growth, neurodegeneration, and carcinomas is discussed.  相似文献   

9.
C Gros  B Giros  J C Schwartz 《Biochemistry》1985,24(9):2179-2185
Two membrane-bound enkephalin-hydrolyzing aminopeptidase activities were partially purified from rat brain membranes. The first, which represents 90% of the total activity, was highly sensitive to both puromycin (Ki = 1 microM) and bestatin (Ki = 0.5 microM). The second was inhibited much more by bestatin (Ki = 4 microM) than by puromycin (Ki = 100 microM). The latter puromycin-insensitive aminopeptidase was found to resemble aminopeptidase M purified from rat kidney brush border membranes. Both displayed the same purification pattern and the same kinetic constants of substrates and inhibitors, and both were similarly inactivated by metal chelating agents. Moreover, antibodies raised in rabbits against rat kidney aminopeptidase M inhibited the aminopeptidase activities of both kidney and brain puromycin-insensitive enzymes at similar dilutions, while the brain puromycin-sensitive aminopeptidase activity was not affected. Thus, aminopeptidase M (EC 3.4.11.2) was found to occur in brain, and the role of this enzyme in inactivating endogenous enkephalins released from their neuronal stores is suggested.  相似文献   

10.
The presence of catechol-O-methyltransferase (COMT) in the rat brain was studied using a combination of two-dimensional gel electrophoresis (2-DE), protein blotting and a specific antiserum. Two major immunoreactive proteins were identified—one with mol. wt 23 kdalton and an isoelectric point of 5.2, the other of mol. wt 25 kdalton and an isoelectric point of 5.1. In addition, multiple lower molecular weight immunoreactive proteins, possibly corresponding to breakdown products of the enzyme, were also detected. The 23 kdalton form of COMT, which is probably the soluble form of the enzyme, is a major protein visible on silver-stained 2-D gels of rat brain. In contrast, the other proteins recognized by the antiserum were not detected by the silver stain. These results demonstrate, using 2-DE, that at least two distinct forms of catechol-O-methyltransferase are present in rat brain. In addition, since one of these proteins is stained by silver, these results also serve to identify another protein visible on 2-D electrophoretograms of rat brain.  相似文献   

11.
Abstract— About 10% of the glutaminase activity associated with pig brain mitochondria was readily extractable by a variety of techniques but the remainder was very resistant to extraction. These two forms, which have been termed the soluble and membrane-bound forms respectively, have been shown to differ in their responses to activation by phosphate and phosphate-borate containing buffers. Submitochondrial fractionation studies indicated that the soluble form was located in the mitochondrial inner matrix whereas the membrane-bound form was associated with the inner membrane. The mitochondria associated with the synaptosomes were found to contain only the membrane-bound form of the enzyme whereas both forms were present in the free brain mitochondria.  相似文献   

12.
The endogenous opioid neuropeptide system seems to be involved in the neural processes which underlie drug addiction. Several studies have reported that the administration of morphine induces changes in the levels and/or activity of endogenous opioid peptides (enkephalin, dynorphin) and their precursors in specific brain regions of the adult CNS. The aim of this work was to study the effects of chronic morphine exposure and its withdrawal on certain aminopeptidases capable of degrading opioid peptides in brain areas including the amygdala, hypothalamus, hippocampus, striatum and brain cortices. In animals treated with morphine, aminopeptidase N presented higher enzyme activity levels in the striatum, the hypothalamus and the amygdala compared to control animals, although statistically significant differences were observed only in the case of the striatum. In addition, the activity of soluble puromycin-sensitive aminopeptidase (PSA) was found to be higher in the frontal cortex of these rats. In contrast, rats experiencing withdrawal symptoms presented decreased levels of aminopeptidase activity in certain brain areas. Thus, the activity of aminopeptidase N in the hippocampus and soluble puromycin-sensitive aminopeptidase in the frontal cortex were found to be lower in rats experiencing naloxone precipitated withdrawal symptoms, compared to the corresponding controls. Finally, the activity of the three studied aminopeptidases in vitro was unaltered by incubation with morphine, suggesting that the observed effects are not due to a direct action of this opioid upon the aminopeptidases. The results of the present report indicate that aminopeptidases may play an important role in the processes of tolerance and withdrawal associated with morphine administration.  相似文献   

13.
Secondary lysosomes were isolated from rat liver and separated into a soluble and a membrane fraction. Plasma membranes and microsomes were also isolated and antisera against the various fractions were prepared in rabbits. Lysosomal content and detergent-solubilized membrane fractions were analysed in two-dimensional immunoelectrophoresis (crossed immunoelectrophoresis). The immunoprecipitates were stained by histochemical procedures for different enzyme activities such as phosphatases, non-specific esterase, arylsulphatase, glycosidases and L-leucyl-beta-naphthylamidase. When lysosomal content was tested against its corresponding antiserum, 17 different precipitates could be seen. Most of the enzyme activities tested were shown to reside separately in one or a few precipitates each. In contrast, when the membrane extracts were investigated, a more polymorphic pattern of enzyme-active precipitates appeared. Thus, when lysosomal membrane extracts were reacted with homologous antiserum 11 precipitates with acid phosphatase activity were obtained. Several of the antigens were electrophoretically different and immunologically non-identical. As expected from the biology of secondary lysosomes, many of their antigens were also found in microsomes and/or plasma membranes, but several antigens unique for lysosomes were detected concomitantly. Closer analysis of these results indicated that several seemingly identical enzyme-active proteins occurred both in soluble and membrane-associated forms. However, while many of the membrane antigens expressed 2-4 different enzyme activities, only one activity was detected in individual precipitates of the lysosomal content. Thus, acid phosphatase activity was found together with esterase activity in three membrane-associated antigens. The precipitates formed by two of these also stained for arylsulphatase and nucleoside tri-, di- and monophosphatase activities. L-Leucyl-beta-naphthylamidase activity was found in one additional acid-phosphatase-active precipitate.  相似文献   

14.
Spodoptera frugiperda larvae have a microvillar aminopeptidase and both soluble and membrane-bound forms of amylase and trypsin. Membrane-bound aminopeptidase is solubilized by glycosyl phosphatidylinositol-specific phospholipase C (GPI-PLC) and detergents, suggesting it has a GPI anchor. Membrane-bound trypsin is not affected by GPI-PLC, although it is solubilized by papain and by different detergents. Membrane-bound amylase is similar to trypsin, although once solubilized in detergent it behaves as a hydrophilic protein. Musca domestica trypsin antiserum cross-reacts with only one polypeptide from S. frugiperda midgut. With this antiserum, trypsin was immunolocalized in the anterior midgut cells at the microvillar surface and on the membranes of secretory vesicles found in the apical cytoplasm and inside the microvilli. The data suggest that in this region trypsin is bound to the secretory vesicle membrane by a hydrophobic anchor. Vesicles migrate through the microvilli and are discharged into the lumen by a pinching-off process. Trypsin is then partly processed to a soluble form and partly, still bound to vesicle membranes, incorporated into the peritrophic membrane. In posterior midgut cells, trypsin immunolabelling is randomly distributed inside the secretory vesicles and at the microvilli surface, suggesting exocytosis. Amylase probably follows a route similar to that described for trypsin in anterior midgut, although membrane-bound forms (peptide anchor) solubilize apparently as a consequence of a pH increase inside the vesicles.  相似文献   

15.
It is shown, that the value of Km for maltase, alkaline phosphatase, aminopeptidase M and glycyl-L-leucinedipeptidase, prepared from the jejunum and ileum of 10-day rat litter in membrane and soluble forms in most cases differed but a little in control animals and the rat litter whose mothers in the period of lactation had a diet with 2.5-fold reduced content of protein, and did not change under action of injected thyroxin and dexamethasone. It may be assumed that in the given experimental conditions each of the investigated digestive hydrolases in membrane and soluble forms represents the same enzyme. In conditions of the protein insufficiency in lactating females diet and under action of exogene hormones, apparently, no significant changes occur in structure of synthesised enzymes.  相似文献   

16.
Molecular forms of cholecystokinin in rat brain were studied by radioimmunoassay using two new antisera raised against the C-terminal tetrapeptide common to cholecystokinin and gastrin. Evidence is presented to show that one antiserum (L112) reacts at the C-terminus of the tetrapeptide, while the other antiserum (L131) reacts at its N-terminus. With antiserum L112 the predominant immunoreactive form of CCK found in extracts of rat brain corresponded to the C-terminal octapeptide; a minor immunoreactive form eluted from Sephadex G25 between the C-terminal octapeptide and the tetrapeptide. A similar pattern of molecular forms was found using a third antiserum (L48) previously shown to react well with the C-terminal octapeptide and poorly with the C-terminal tetrapeptide. Antisera L112 and L48 also revealed a quantitatively similar distribution of immunoreactive material in different regions of rat and cow brain. In contrast, antiserum L131 failed to demonstrate significant amounts of immunoreactive material in rat brain. It is concluded that the C-terminal octapeptide of cholecystokinin predominates in rat brain and that contrary to findings of previous workers there is little or no free C-terminal tetrapeptide present.  相似文献   

17.
The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular compartment and hydrophobicity. A major portion of GAD64 is hydrophobic and firmly membrane-anchored and can only be released from membrane fractions by detergent. A second portion is hydrophobic but soluble or of a low membrane avidity, and a third minor portion is soluble and hydrophilic. All the GAD64 forms have identical pI and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Results of pulse-chase labeling with [35S]methionine are consistent with GAD64 being synthesized as a soluble protein that is processed into a firmly membrane-anchored form in a process which involves increases in hydrophobicity but no detectable changes in size or charge. All the GAD64 forms can be resolved into two isoforms, alpha and beta, which differ by approximately 1 kDa in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis but are identical with regard to all other parameters analyzed in this study. GAD65 has a shorter half-life than the GAD64 forms, remains hydrophilic and soluble, and does not resolve into isomers. Comparative analysis of the brain and beta-cell forms of GAD show that GAD65 and GAD64 in pancreatic beta-cells correspond to the larger and smaller forms of GAD in brain, respectively. The expression of different forms and the flexibility in subcellular localization of the GAD autoantigen in beta-cells may have implications for both its function and autoantigenicity.  相似文献   

18.
Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.  相似文献   

19.
Two major enzyme forms of cytosolic NAD-linked glycerol-3-phosphate dehydrogenase in rabbit brain have been purified to apparent homogeneity. One major enzyme form designated I6.5 exhibits an iso-electric point at pH 6.5, and is indistinguishable from the major form I6.5 found in other tissues. The other major form, designated I5.9, has an isolectric point at pH 5.9, and by amino acid analysis is shown to be a true isoenzyme distinct from form I6.5. Form I5.9 appears to be closely related to or identical with the major enzyme characteristic of heart. Neither the brain enzyme form I5.9 nor the major heart isoenzyme are inhibited by antiserum to the muscle enzyme. Because of the high apparent Km for NADH, it is postulated that the brain isoenzyme I5.9 serves to maintain glycolysis when NADH levels rise under relatively anaerobic conditions especially during fetal and neonatal development.  相似文献   

20.
The soluble alpha-mannosidase of rat liver, originally described as a cytoplasmic alpha-mannosidase, has been purified to homogeneity by conventional techniques. The purified enzyme has an apparent molecular weight of 350,000 and is composed of 107-kDa subunits. The soluble alpha-mannosidase has the same enzymatic properties as the endoplasmic reticulum (ER) membrane alpha-mannosidase of rat liver (Bischoff, J., and Kornfeld, R. (1983) J. Biol. Chem. 258, 7909-7910) which is believed to play a role in oligosaccharide processing in the rough ER. Like the membrane-bound ER alpha-mannosidase, the soluble alpha-mannosidase can hydrolyze alpha-linked mannose from both p-nitrophenyl alpha-mannoside (Km = 0.14 mM) and high mannose oligosaccharides, is not inhibited by the mannose analogues swainsonine and 1-deoxymannojirimycin, is stabilized by MnCl2 or CoCl2, and does not bind to concanavalin A-Sepharose. A goat polyclonal antibody raised against the purified soluble alpha-mannosidase specifically recognizes the rat liver membrane-bound ER alpha-mannosidase, leading us to propose that they are two forms of the same enzyme and that the soluble form is derived from the ER membrane alpha-mannosidase by proteolysis. The antibody also cross-reacts with both the soluble and membrane-bound forms of ER alpha-mannosidase activity in cultured Chinese hamster ovary cells and rat H35 hepatoma cells. Since the ER alpha-mannosidase is presumed to be involved in the early steps of oligosaccharide processing, the action of the purified soluble form of the enzyme on high mannose oligosaccharides was examined. Surprisingly, the enzyme released free mannose from oligosaccharides ranging in size from Glc1Man9GlcNAc to Man5GlcNAc with almost equal efficiency. However, a long term incubation of the enzyme with Man9GlcNAc led to the accumulation of Man7GlcNAc and produced only small amounts of Man6GlcNAc and Man5GlcNAc. Structural analysis of these reaction products indicated that the purified soluble form of ER alpha-mannosidase shows little specificity for which mannose residues it removes from Man9GlcNAc. In contrast, as shown in the accompanying paper, the intracellular action of ER alpha-mannosidase on glycoprotein-bound Man9GlcNAc2 is highly specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号