首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
2.
Autoradiographs of whole Amoeba proteus host cells fixed after the implantation of single nuclei from A. proteus donors labeled with any one of 8 different radioactive amino acids showed that the label had become highly concentrated in the host cell nucleus as well as in the donor nucleus and that the cytoplasmic activity was relatively low. When these amebae were sectioned, the radioactivity was found to be homogeneously distributed throughout the nuclei. The effect of unlabeled amino acid "chaser," the solubility of the labeled material, and the long-term behavior of the labeled material gave evidence that the radioactivity was in protein. At equilibrium, the host cell nucleus contained approximately 30 per cent of the radioactivity distributed between the two nuclei. This unequal nuclear distribution is attributed to the presence of two classes of nuclear proteins: a non-migratory one that does not leave the nucleus during interphase, and a migratory one, called cytonucleoprotein, that shuttles between nucleus and cytoplasm in a non-random manner. It is estimated that between 12 per cent and 44 per cent of the cytonucleoproteins are present in the cytoplasm of a binucleate cell at any one moment. Nuclei of Chaos chaos host cells also concentrated label acquired from implanted radioactive A. proteus nuclei.  相似文献   

3.
The distribution of the type III isozyme of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) in rat kidney, liver, spleen, lung, and brain was determined immunohistochemically, using a monoclonal antibody generated against the enzyme purified from rat Novikoff hepatoma.In all tissues, specific cell types exhibited intense staining at the nuclear periphery, as confirmed by analysis using confocal microscopy. Isolated nuclei from kidney or liver were devoid of detectable type III hexokinase, although the enzyme was found in the "soluble" fraction from kidney or liver homogenates; these results suggest that the type III isozyme is associated in a labile manner with the external surface of the nucleus, with this association being disrupted by conventional homogenization and nuclear isolation procedures. The nuclear localization of the type III isozyme contrasts with previously demonstrated association of the type I and II isozymes with mitochondria. The physiological significance of a nuclear localization for the type III isozyme remains unclear. However, it was noted that many of the cells exhibiting prominent nuclear staining for type III hexokinase are endothelial or epithelial cells, suggesting a possible relationship between nuclear type III hexokinase and transport functions which are prominent in such cells.  相似文献   

4.
By using green fluorescent protein fusion, we investigated the subcellular localization of all the caspases that have been cloned from humans and implicated in the execution of apoptosis. We divided these caspases into three groups according to subcellular localization. The first group includes caspase-1, -3, -6, -7, and -9, which are expressed mainly in the cytoplasm with various levels of nuclear localization depending on the cell type. The second group has a single member, caspase-2, which is primarily localized in the nucleus. The nuclear localization was demonstrated to be mediated by a nuclear localization signal near the NH(2)-terminus of the prodomain. The third group includes caspase-8 and -10, which have a cytoplasmic distribution. These two members have potent, rapid cell death-inducing activity and are prone to make aggregates when overexpressed. Their prodomains formed marked fibrous structures in the cytoplasm whose localization seemed distinct from organelles or cytoskeletons. None of the GFP-caspases examined in this study showed a predominant mitochondrial localization as has been reported for some caspases.  相似文献   

5.
Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation.  相似文献   

6.
The heat shock proteins are a family of stress-inducible proteins that act as molecular chaperones for nascent proteins and assist in protection and repair of proteins whose conformation is altered by stress. HSP72 and HSP73 are two major cytosolic/nuclear stress proteins of mammalian cells, with extensive sequence homology. HSP73 is constitutively expressed, whereas HSP72 is highly stress-inducible. However, it is unclear why two isoforms are expressed and whether these two proteins have different functions in the cell. To assist in the delineation of function, we have completed a detailed study of the localization of HSP72 and HSP73 in the cell before and after heat stress, using two different methods of detection. By indirect immunohistochemistry, the localization of these two proteins is similar, cytoplasmic and nuclear in nonstressed cells with a translocation to nucleoli immediately after heat. By the more sensitive immunogold electron microscopy technique, differences in localization were noted. In nonstressed cells, HSP72 was primarily nuclear, localized in heterochromatic regions and in nucleoli. HSP73 was distributed throughout the cell, with most cytoplasmic label associated with mitochondria. Mitotic chromosomes were also heavily labeled. After stress, HSP72 concentrated in nuclei and nucleoli and HSP73 localized to nuclei, nucleoli, and cytoplasm, with increased label over mitochondria. These differences in localization suggest that the HSP72 and HSP73 may associate with different proteins or complexes and hence have different but overlapping functions in the cell.  相似文献   

7.
Radioactivity, apparently in cytonucleoproteins, from an amino acid-labeled nucleus implanted into a non-radioactive cell appeared in the host nucleus within 10 minutes, and the typical equilibrium ratio 70:30 donor nucleus radioactivity:host nucleus radioactivity was reached in 4 to 5 hours at 25°C. If such binucleates grew and divided, no localization of radioactivity was observable in cells fixed during mitosis, but the protein label remained concentrated in the daughter interphase nuclei for at least 4 generations. Continued migration of cytonucleoproteins was observed if these daughter nuclei were transplanted to other unlabeled cells. The Q10 (19° to 29°C) of the migration rate of radioactive cytonucleoproteins was ca. 1.3, suggesting that passage through the cytoplasm occurred by diffusion. Both non-migratory nuclear proteins and cytonucleoproteins appear to be synthesized in the cytoplasm.  相似文献   

8.
As part of an examination of how developmental mechanisms such as axis specification, cell fate specification, and segmentation have evolved, we have cloned homologs of the Drosophila melanogaster genes dorsal and snail from the glossiphoniid leech Helobdella robusta. Sequences from one dorsal-class gene (Hro-dl) and two snail-class genes (Hro-sna1 and Hro-sna2) were identified. Polyclonal antibodies were raised against the most conserved domains of HRO-DL and HRO-SNA1. Nuclear staining appeared for both proteins in mid-embryogenesis, in mesodermal and ectodermal precursors. During segmentation, segmentally iterated stripes of cells with strong HRO-DL staining appeared. The stripes of HRO-DL staining were first concentrated in the cytoplasm of cells, and later in the nuclei. Around this time, HRO-SNA levels also appeared in nuclei in segmentally iterated stripes. The localization of HRO-DL and HRO-SNA proteins raise the possibility that these genes are part of a conserved genetic pathway that, instead of specifying the dorsoventral axis and the mesoderm as in flies, might play a role in the diversification of cell types within segment primordia during leech development.  相似文献   

9.
The identification of nucleolar proteins and immunocytochemical localization of small nuclear ribonucleoprotein (snRNP) elements revealed the presence of three types of nuclear bodies in Douglas fir microspore nuclei. One type consists of structures resembling Cajal bodies (CBs) and contains nucleolar proteins as well as snRNPs and U2 snRNA. The second type is bizonal bodies, which are nuclear bodies also linked with the splicing system. The bizonal body comprises two parts: the first contains Sm proteins and stains strongly with silver stain, and the second resembles CBs in terms of the degree of silver staining and molecular composition. Douglas fir is the second species after larch where the presence of bizonal bodies has been demonstrated. Pseudotsuga menziesii Mirb and Larix decidua Mill are species with one of the longest microsporogenesis processes known in plants. The presence of bizonal bodies in both species may be linked to the intensification of the splicing processes in microspores with an exceptionally long cell cycle. The third type of structure is dense bodies, whose morphology and degree of silver staining strongly indicate their functional and spatial relationship to the dense part of bizonal bodies.  相似文献   

10.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

11.
Summary In the salmon and trout aminergic cell bodies were found in the nucleus recessus lateraralis (NRL) and the nucleus recessus posterioris (NRP), both of which are situated near the third ventricle. Three cell types could be distinguished. Type 1 produces a green and type 2 a yellow fluorescence. The former type probably contains dopamine and the latter 5-hydroxytryptamine. Both types possess intraventricular protrusions in contact with the cerebrospinal fluid. The third cell type produces a less intense blue-green fluorescence; relatively few cells of this type have thick processes in contact with the ventricle. In addition, large fluorescent cells were found in the salmon, dorsal from the caudal part of the NRL. The various parts of the NRL and NRP are interconnected by thick bundles of nerve fibers; tracts leaving the nuclei could be traced for short distances only. The cells of the nucleus praeopticus (NPO), those of the medial part and to a much lesser extent also of the lateral part of the nucleus lateralis tuberis (NLT) have an aminergic innervation which probably originates from the NRL and/or NRP. All parts of the neurohypophysis contain many monoaminergic fibers, with aminergic material concentrated at the neuro-adenohypophysial interface. Fibers were not observed to penetrate the basal lamina. In the salmon and trout the fibers have a similar distribution, but differ in the intensity of fluorescence, being high in the salmon and low in the trout. Only in the trout have fluorescent cells been found in the adenohypophysis and very occasionally in the neurohypophysis. A number of these cells are basophilic and show a PAS-positive reaction.  相似文献   

12.
The objective of this study was to determine the cellular and subcellular distribution of small nuclear ribonucleoprotein particles (snRNPs) in the adult rat testis in relation to the different cell types at the various stages of the cycle of the seminiferous epithelium. The distribution of snRNPs in the nucleus and cytoplasm of germ cells was quantitated in an attempt to correlate RNA processing with morphological and functional changes occurring during the development of these cells. Light-microscopic immunoperoxidase staining of rat testes with polyclonal anti-Sm and monoclonal anti-Y12 antibodies localized spliceosome snRNPs in the nuclei and cytoplasm of germ cells up to step 10 spermatids. Nuclear staining was intense in Sertoli cells, spermatogonia, spermatocytes, and in the early steps of round spermatid development. Although comparatively weaker, cytoplasmic staining for snRNPs was strongest in mid and late pachytene spermatocytes and early round spermatids. Quantitative electron-microscopic immunogold labeling of Lowicryl embedded testicular sections confirmed the light-microscopic observations but additionally showed that the snRNP content peaked in the cytoplasm of midpachytene spermatocytes and in the nuclei of late pachytene spermatocytes. The immunogold label tended to aggregate into distinct loci over the nuclear chromatin. The chromatoid body of spermatids and spermatocytes and the finely granular material in the interstices of mitochondrial aggregates of spermatocytes were found to be additional sites of snRNP localization and were intensely labeled. This colocalization suggests that these dense cytoplasmic structures may be functionally related. Anti-U1 snRNP antibodies applied to frozen sections showed the same LM localization pattern as spliceosome snRNPs. Anti-U3 snRNP antibodies applied to frozen sections stained nucleoli of germ cells where pre-rRNA is spliced.  相似文献   

13.
The localization of small nuclear ribonucleic acids (snRNAs) during mitosis in Amoeba proteus was studied by high voltage (1,000 kV) electron microscope autoradiography. By suitable micromanipulations, the snRNA's, labeled with [3H]uridine, were made to be the only radioactive molecules in the cell and thus easy to follow autoradiographically. During interphase the snRNA label, which is almost exclusively nuclear, is distributed fairly uniformly through the nucleus with a slightly higher amount of label over chromatin than over nonchromatin areas. During prophase the snRNAs, which continue to be largely nuclear, become highly concentrated in the condensing chromosomes. At metapase, almost all of the snRNAs are cytoplasmic and essentially none are associated with the maximally condensed chromatin. Beginning in early anaphase, the snRNAs resume their association with the chromosomes, with the degree of association increasing throughout anaphase. Most of the snRNAs are back in the nuclei by telophase, but the intranuclear localization is hard to determine. We conclude that snRNAs have a great affinity for the partially condensed chromosomes of prophase and anaphase, but none for the maximally condensed chromosomes of metaphase. A minor amount of snRNA localizations in association with nucleoli and the nuclear envelope are also reported. On the basis of these findings a role of snRNAs in genetic "reprogramming" or chromosome organization is proposed.  相似文献   

14.
DNA replication in eukaryotic cells is restricted to the S-phase of the cell cycle. In a cell-free replication model system, using SV40 origin-containing DNA, extracts from G1 cells are inefficient in supporting DNA replication. We have undertaken a detailed analysis of the subcellular localization of replication proteins and cell cycle regulators to determine when these proteins are present in the nucleus and therefore available for DNA replication. Cyclin A and cdk2 have been implicated in regulating DNA replication, and may be responsible for activating components of the DNA replication mitiation complex on entry into S-phase. G1 cell extracts used for in vitro replication contain the replication proteins RPA (the eukaryotic single-stranded DNA binding protein) and DNA polymerase as well as cdk2, but lack cyclin A. On localizing these components in G1 cells we find that both RPA and DNA polymerase are present as nuclear proteins, while cdk2 is primarily cytoplasmic and there is no detectable cyclin A. An apparent change in the distribution of these proteins occurs as the cell enters S-phase. Cyclin A becomes abundant and both cyclin A and cdk2 become localized to the nucleus in S-phase. In contrast, the RPA-34 and RPA-70 subunits of RPA, which are already nuclear, undergo a transition from the uniform nuclear distribution observed during G1, and now display a distinct punctate nuclear pattern. The initiation of DNA replication therefore most likely occurs by modification and activation of these replication initiation proteins rather than by their recruitment to the nuclear compartment.  相似文献   

15.
16.
We previously reported that the nuclear import of substrates containing SV40 T antigen nuclear localization signal (NLS) was suppressed in a temperature-sensitive RCC1 mutant cell line, tsBN2, at nonpermissive temperature. Moreover, it was shown that import into wild type BHK21 cell-derived nuclei gradually decreased in heterokaryons between the tsBN2 and BHK21 cells, although the BHK21 nuclei retained wild type RCC1 and should contain RanGTP (Tachibana et al., 1994). In this study, it was found that in the heterokaryons cultured at non-permissive temperature, endogenous importin alpha was not detected immunocytochemically in the cytoplasm or BHK21 nuclei but only in the tsBN2 nuclei, suggesting that importin alpha cannot be exported from the RCC1-depleted nuclei. In fact, importin alpha microinjected into the nucleus of tsBN2 cells at non-permissive temperature remained in the nucleus. These results strongly support the hypothesis that the recycling of importin alpha from the nucleus requires nuclear RanGTP. Moreover, it was found that cytoplasmic injection of importin alpha restored the import of SV40 T-NLS substrates in the BHK21 nuclei but not the tsBN2 nuclei in the heterokaryons. This indicates that the decrease of importin alpha from the cytoplasm in the heterokaryons leads to a suppression of the efficiency of nuclear import of the T-NLS substrate and provides support for the view that nuclear RanGTP is essential for the nuclear entry of the substrates.  相似文献   

17.
Murine hybridomas were generated to DNA/tight binding proteins complex isolated from the residual nuclear structure following a procedure analogous to that yielding "empty" shells of nuclear envelope. A monoclonal antibody designated 2A8 was selected because of its differential immunostaining of mitotic cells of a synchronized mouse fibroblast cell culture L-929. The target antigen was rendered insoluble by a sequence of extractions of isolated nuclei of diverse cell types with detergents, urea, DNase I and alkali thus reproducing some solubility properties of proteins constituting an operationally defined residual nuclear matrix. The cognate polypeptide was localized on a subset of proteins of Mr 58-65 kDa, 70 kDa in isolated fibroblast nuclear matrices. The functional implication of the antigen in mitosis-related disassembly-assembly process of the nuclear matrix/envelope was detected. At prophase the antibody decorated the nuclear periphery and nuclear envelope fixed inward filaments. A fibrous network of cytoplasmic localization was stained in metaphase. At anaphase the antigen was dispositioned into peripheral fibrogranular clusters of polar orientation predominantly on one side of the nucleus. Proceeding to telophase a spreading fluorescence was manifested over the entire contour of the nuclear periphery to delineate the reforming nucleus. By immunogold electron microscopy of interphase cells the antigen was identified as evenly distributed in chromatin and interchromatin regions. At initiation of chromosome condensation in mitosis the label was detected predominantly in the chromosomal area.  相似文献   

18.
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized.  相似文献   

19.
The nucleus rotundus of 21 species of teleosts was studied by a modified Bodian and the Golgi method to clarify the histological organization, with special reference to the cell lamination and the glomerular formation. The common components of the nucleus in all species are as follows: a thick fiber bundle which comes from the commissura horizontalis and enters the nucleus from the dorsal surface, many small cells, large cells, glomeruli, and a surrounding fibrous capsule. The nuclei of all species studied are classified into three types mainly on the distribution of the small cells, and to a lesser degree on the location of the large cells and the glomeruli. The first type of nucleus has small cells, large cells and glomeruli throughout its extent. In the second type of nucleus, many small cells form a peripheral cell layer, while the large cells and glomeruli are found all over the nucleus. The third type of nucleus is clearly laminated. It is composed of four layers arranged concentrically around a central fiber net in the following order: a glomerular layer, a fibrous layer, a small-cell layer, and a peripheral fibrous capsule. In some species, the large cells are located in the fibrous capsule, and all glomeruli contain a star-like structure, which corresponds to the tips of the large cell dendrites.  相似文献   

20.
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号