首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
By using two-dimensional gel electrophoresis and immunoblotting, we have analyzed the expression of beta-tubulin isotypes in the higher plant, carrot. We report a complex expression of beta-tubulins that is dependent on the developmental stage of the tissues analyzed. Consequently, each tissue examined can be identified by its unique composition of beta-tubulins. In total, there are six electrophoretically separable beta-tubulins. In no tissue, however, is there less than two or more than five beta-tubulins. Within this framework we have detected a beta-tubulin specific to seedling tissue beta 6, and a beta-tubulin, beta 5, that is found only in the vegetative tissues of the mature plant. Traced from stem to midrib to leaf lamina, the beta 5 isotype becomes progressively dominant relative to beta 1. Another beta-tubulin isotype, beta 4, appears in marked abundance in immature and mature stamens. In isolated mature pollen the beta 4-tubulin overwhelmingly predominates the ubiquitously expressed beta 2-tubulin isotype. The remaining beta-tubulin isotypes also have specific expression programs with beta 1 present in all tissues except pollen and beta 3 absent only from pollen and leafy tissues.  相似文献   

2.
3.
4.
Summary To assay the functional significance of the multiple but closely related - and -tubulin polypeptides (termed isotypes) that are expressed in mammalian cells, we have generated a number of sera that uniquely discriminate among these isotypes. These sera have been used to demonstrate that there is no subcellular sorting of either - or -tubulin isotypes among microtubules of diverse function, either in cells growing in culture or in tissues consisting of cell types that contain specialized kinds of microtubule. In spite of this failure to segregate between functionally distinct kinds of microtubule, the fact that isotype-specific amino acid sequences have been strictly conserved over extensive periods of evolutionary time argues persuasively for a functional role for the different tubulin gene products. One possibility is that they are required for specific interactions with microtubule associated proteins (MAPs), and that tubulin isotypes have coevolved with different cell type-specific MAPs with which they must interact. We have tested this hypothesis by examining the distribution of -tubulin isotypes in mammalian cerebellum in relationship to the known patterns of expression of a number of MAPs, and find that these patterns correlate in the case of M 2 and MAP 3, and M 6 and MAP 1 a. These data, plus emerging data based on a structural analysis of tau, MAP 1 b and MAP 2 obtained via sequence determination of cloned cDNAs, are discussed in terms of the possible functional significance of tubulin isotype/MAP interactionsin vivo.  相似文献   

5.
6.
alpha- and beta-Tubulin are encoded in vertebrate genomes by a family of approximately 6-7 functional genes whose polypeptide products differ in amino acid sequence. In the chicken, one beta-tubulin isotype (c beta 6) has previously been found to be expressed only in thrombocytes and erythroid cells, where it is assembled into a circumferential ring of marginal band microtubules. In light of its unique in vivo utilization and its divergent assembly properties in vitro, we used DNA transfection to test whether this isotype could be assembled in vivo into microtubules of divergent functions. Using an antibody specific to c beta 6, we have found that upon transfection this polypeptide is freely coassembled into an extensive array of interphase cytoplasmic microtubules and into astral and pole-to-chromosome or pole-to-pole microtubules during mitosis. Further, examination of developing chicken erythrocytes reveals that both beta-tubulins that are expressed in these cells (c beta 6 and c beta 3) are found as co-polymers of the two isoforms. These results, in conjunction with efforts that have localized various other beta-tubulin isotypes, demonstrate that to the resolution limit afforded by light microscopy in vivo microtubules in vertebrates are random copolymers of available isotypes. Although these findings are consistent with functional interchangeability of beta-tubulin isotypes, we have also found that in vivo microtubules enriched in c beta 3 polypeptides are more sensitive to cold depolymerization than those enriched in c beta 6. This differential quantitative utilization of the two endogenous isotypes documents that some in vivo functional differences between isotypes do exist.  相似文献   

7.
We describe the structure of a novel and unusually heterologous beta-tubulin isotype (M beta 1) isolated from a mouse bone marrow cDNA library, and a second isotype (M beta 3) isolated from a mouse testis cDNA library. Comparison of M beta 1 and M beta 3 with the completed (M beta 4, M beta 5) or extended (M beta 2) sequence of three previously described beta-tubulin isotypes shows that each includes a distinctive carboxy-terminal region, in addition to multiple amino acid substitutions throughout the polypeptide chain. In every case where a mammalian interspecies comparison can be made, both the carboxy-terminal and internal amino acid substitutions that distinguish one isotype from another are absolutely conserved. We conclude that these characteristic differences are important in determining functional distinctions between different kinds of microtubule. The amino acid homologies between M beta 2, M beta 3, M beta 4, and M beta 5 are in the range of 95-97%; however the homology between M beta 1 and all the other isotypes is very much less (78%). The dramatic divergence in M beta 1 is due to multiple changes that occur throughout the polypeptide chain. The overall level of expression of M beta 1 is low, and is restricted to those tissues (bone marrow, spleen, developing liver and lung) that are active in hematopoiesis in the mouse. We predict that the M beta 1 isotype is functionally specialized for assembly into the mammalian marginal band.  相似文献   

8.
The subcellular localization of microtubule proteins in the neurons of squid (Doryteuthis bleekeri) was immunologically studied using monoclonal antibodies against the microtubule proteins. We found that (1) the squid neurons contained three kinds of high-molecular-weight microtubule-associated proteins [MAP A of approximately 300 kilodaltons (kD), MAP B of 260 kD, and axolinin of 260 kD] and two kinds of beta-tubulin isotypes (beta 1 and beta 2); (2) the cell body of the squid giant neuron contained MAP A, MAP B, and the two beta-tubulin isotypes (beta 1 and beta 2); (3) axolinin and the beta 1 isotype were present exclusively in the peripheral axoplasm of the giant axon; and (4) a small amount of axolinin, MAP A, and the beta 1 isotype was found in the insoluble aspect of the central axoplasm, whereas the soluble aspect of the central axoplasm contained an abundant amount of MAP A along with the modified form of the beta 1 isotype. The regional difference of the distribution of the microtubule protein components may explain the differences in stability among axonal microtubules. Microtubules in the soluble aspect of the central axoplasm are sensitive to any treatment with colchicine, cold temperature, and high ionic strength but those both in the insoluble aspect of the central axoplasm and in the peripheral axoplasm are highly insensitive to the treatment.  相似文献   

9.
In chicken, beta-tubulin is encoded by a family of seven genes. We have now isolated and sequenced overlapping cDNA clones corresponding to gene c beta 7 (previously designated c beta 4'), the only chicken beta-tubulin not previously characterized. The inferred amino acid sequence of c beta 7 tubulin is identical with the class I beta-tubulin isotype found in human, mouse and rat. Moreover, c beta 7 is highly expressed in almost all tissue and cell types in chicken, a pattern similar to those of the genes for class I beta-tubulin isotypes in other vertebrates. Comparison of the complete family of chicken beta-tubulin gene sequences reveals that the heterogeneity of beta-tubulin polypeptides encoded in a higher eukaryote is confined to six distinct beta-tubulin isotypes. Five of these are members of evolutionarily conserved isotypic classes (I to V), whereas the sixth represents a divergent erythroid-specific tubulin whose sequence has not been conserved.  相似文献   

10.
Compartmentalization of beta-tubulin isotypes within cells according to function was examined in gerbil olfactory and respiratory epithelia by using specific antibodies to four beta-tubulin isotypes (beta(I), beta(II), beta(III), and beta(IV)). Isotype synthesis was cell-type-specific, but the localization of the isotypes was not compartmentalized. All four isotypes were found in the cilia, dendrites, somata, and axons of olfactory neurons. Only two isotypes (beta(I) and beta(IV)) were present in the cilia of nasal respiratory epithelial cells. The beta(IV) isotype, thought to be an essential component of cilia, was present in olfactory neurons and respiratory epithelial cells, which are ciliated, but was not found in basal cells (the stem cells of olfactory sensory neurons, which have no cilia). Olfactory neurons therefore do not synthesize beta(IV)-tubulin until they mature, when functioning cilia are also elaborated. The failure to observe compartmentalization of beta-tubulin isotypes in olfactory neurons sheds new light on potential functions of the beta-tubulin isotypes.  相似文献   

11.
Tubulin, the major constituent protein of microtubules, is a heterodimer of alpha and beta subunits. Both alpha and beta exist in multiple isotypic forms. It is not clear if different isotypes perform different functions. In order to approach this question, we have made a monoclonal antibody specific for the beta III isotype of tubulin. This particular isotype is neuron-specific and appears to be phosphorylated near the C terminus. We have used immunoaffinity depletion chromatography to prepare tubulin lacking the beta III subunit. We find that removal of the beta III isotype results in a tubulin mixture able to assemble much more rapidly than is unfractionated tubulin when reconstituted with either of the two microtubule-associated proteins (MAPs), tau or MAP 2. Our results suggest that the different isotypes of tubulin differ from each other in their ability to polymerize into microtubules. We have also found that the anti-beta III antibody can stimulate microtubule assembly when reconstituted with tubulin and either tau or MAP 2. When reconstituted with tubulin lacking the beta III isotype, the antibody causes the tubulin to polymerize into a polymer that is a microtubule in the presence of MAP 2 and a ribbon in the presence of tau.  相似文献   

12.
Previous studies suggest that beta-tubulin isotype protein levels could be useful as indicators of nonsmall cell lung cancer (NSCLC) aggressiveness. However, measurement of protein amounts in tissue samples by staining techniques is semiquantitative at best. Since technologies for measuring mRNA levels have become more efficient and quantitative, we wanted to determine whether beta-tubulin message levels may be useful as biomarkers. Quantitative real-time RT-PCR was used to measure the seven classes of beta-tubulin isotypes, stathmin and MAP4 mRNA levels in 64 NSCLC and 12 normal lung tissue samples. We found significantly higher fractions of beta-tubulin classes II and V mRNA compared to the other isotypes in all lung tumor samples (P < 0.05). In addition, the ratio of beta-tubulin classes II/V mRNA was significantly higher in NSCLCs compared to normal lung tissues (P < 0.001). The data suggest that the ratio of beta-tubulin classes II and V mRNA could be useful as a biomarker for NSCLC tumor differentiation and/or NSCLC aggressiveness. Furthermore, the ratio of MAP4 to stathmin mRNA was found to be higher in diseased lung tissues compared to normal lung tissues, suggesting this ratio might also be used as a clinically relevant biomarker for NSCLCs.  相似文献   

13.
We report here the complete sequence of a highly divergent chicken erythrocyte beta-tubulin, c beta 6, which appears to represent a major exception to the observation that the primary sequences and sites of expression of beta-tubulin isotypes are conserved within vertebrates. The amino acid sequence was deduced from overlapping cloned cDNAs identified in a chicken erythroblast cDNA library contained in the expression vector, lambda gt11. Compared with other chicken beta-tubulins, among which the maximum sequence divergence is only 8%, c beta 6-tubulin is more hydrophobic, contains seven fewer net negative charges, and exhibits a surprising 17% overall divergence in its amino acid sequence. DNA and RNA blot analyses show that c beta 6-tubulin is present as a single gene copy in the chicken genome and is specifically expressed in the bone marrow. Comparisons of RNA blots and immunoblots of various cells and tissues confirm that this beta-tubulin isotype is contained specifically in erythrocytes and thrombocytes and accounts for 75% of the beta-tubulin mRNA species contained in developing erythroblasts. Interestingly, c beta 6-tubulin exhibits 18% amino acid sequence divergence relative to MB1, the analogous hematopoietic beta-tubulin contained in mouse.  相似文献   

14.
In mammalian brain, beta-tubulin occurs as a mixture of four isotypes designated as types I, II, III, and IV. It has been speculated in recent years that the different tubulin isotypes may confer functional diversity to microtubules. In an effort to investigate whether different tubulin isotypes differ in their functional properties we have studied the colchicine binding kinetics of bovine brain tubulin upon removal of the beta III isotype. We found that the removal of the beta III isotype alters the binding kinetics from biphasic to monophasic with the disappearance of the slow phase. The kinetics become biphasic with the reappearance of the slow phase when the beta III-depleted tubulin was mixed with the beta III fraction eluted from the affinity column with 0.5 M NaCl. The analysis of the kinetic data reveals that the tubulin dimers containing beta III bind colchicine at an on-rate constant of 35 M-1 s-1 while those lacking beta III bind at 182 M-1 s-1. Our results strongly suggest that the beta-subunit plays a very important role in the interaction of tubulin with colchicine.  相似文献   

15.
S A Lewis  W Gu  N J Cowan 《Cell》1987,49(4):539-548
Mammalian cells express a spectrum of tubulin isotypes whose relationship to the diversity of microtubule function is unknown. To examine whether different isotypes are segregated into functionally distinct microtubules, we generated immune sera capable of discriminating among the various naturally occurring beta-tubulin isotypes. Cloned fusion proteins encoding each isotype were used first to tolerogenize animals against shared epitopes, and then as immunogens to elicit a specific response. In experiments using these sera, we show that there is neither complete nor partial segregation of beta-tubulin isotypes: both interphase cytoskeletal and mitotic spindle microtubules are mixed copolymers of all expressed beta-tubulin isotypes. Indeed, a highly divergent isotype normally expressed only in certain hematopoietic cells is also indiscriminately assembled into all microtubules both in their normal context and when transfected into HeLa cells.  相似文献   

16.
Five beta-tubulin isotypes are expressed differentially during chicken brain development. One of these isotypes is encoded by the gene c beta 4 and has been assigned to an isotypic family designated as Class III (beta III). In the nervous system of higher vertebrates, beta III is synthesized exclusively by neurons. A beta III-specific monoclonal antibody was used to determine when during chick embryogenesis c beta 4 is expressed, the cellular localization of beta III, and the number of charge variants (isoforms) into which beta III can be resolved by isoelectric focusing. On Western blots, beta III is first detectable at stages 12-13. Thereafter, the relative abundance of beta III in brain increases steadily, apparently in conjunction with the rate of neural differentiation. The isotype was not detectable in non-neural tissue extracts from older embryos (days 10-14) and hatchlings. Western blots of protein separated by two-dimensional gel electrophoresis (2D-PAGE) reveal that the number of beta III isoforms increases from one to three during neural development. This evidence indicates that beta III is a substrate for developmentally regulated, multiple-site posttranslational modification. Immunocytochemical studies reveal that while c beta 4 expression is restricted predominantly to the nervous system, it is transiently expressed in some embryonic structures. More importantly, in the nervous system, immunoreactive cells were located primarily in the non-proliferative marginal zone of the neural epithelia. Regions containing primarily mitotic neuroblasts were virtually unstained. This localization pattern indicates that c beta 4 expression occurs either during or immediately following terminal mitosis, and suggests that beta III may have a unique role during early neuronal differentiation and neurite outgrowth.  相似文献   

17.
This paper describes the isolation and complete sequence of a novel expressed human beta-tubulin gene (beta 2). The sequence is compared with that of two other expressed human beta-tubulin genes (M40 and 5 beta). All are encoded by four exons. Though the boundaries of each exon are absolutely conserved among the three genes, the intervening sequences differ considerably in size and sequence content. Two of the genes (M40 and 5 beta) contain one (M40) or ten (5 beta) members of the middle repetitive Alu family sequences within one of their intervening sequences. Comparison of the amino acid sequences encoded by each gene reveals a high level of homology overall, though there is significant divergence between the carboxy termini of two of the genes. The pattern of expression of each beta-tubulin gene has been studied in several different human cell lines using unique non-crosshybridizing probes derived from the 3' untranslated regions. Two of the genes, M40 and beta 2, are expressed at varying levels in all of the cell lines examined, though the level of expression of one of these genes parallels the other in most cases. The third gene, 5 beta, is detectably expressed only in cells of neural origin. Thus, distinct human beta-tubulin isotypes are encoded by genes whose exon size and number has been conserved evolutionarily, but whose pattern of expression may be regulated either co-ordinately or uniquely. Of the approximately 15 sequences contained in the human beta-tubulin multigene family, nine have now been sequenced fully. The overall composition of the multigene family and the evolutionary relationships among its various members are discussed.  相似文献   

18.
Isolated microtubule proteins from the cold-adapted fish, Atlantic cod (Gadus morhua), assemble at temperatures between 8 and 30 degrees C, while avian and mammalian microtubules normally do not assemble at temperatures below 20 degrees C. Tubulin, the main component in microtubules, is expressed as many isotypes. Microtubules with different isotype composition have been shown to have different dynamic properties in vitro. Our hypothesis was that cold-tolerance of microtubules is caused by tubulin isotypes that differ in the primary sequence compared to mammalian tubulins. Here we show that transfection of human HepG2 cells with cod beta-tubulin induced cold-adaptation of the endogenous microtubules. Incorporation of one single tubulin isotype can induce cold-tolerance to cold-intolerant microtubules. Three cod beta-tubulin isotypes were tested and two of these (beta1 and beta2) transferred cold-tolerance to HepG2 microtubules, thus not all cod beta-tubulins were able to confer cold-stability.  相似文献   

19.
Nucleic acid probes derived from the 3' noncoding region of five tubulin cDNAs were used to study the effects of thyroid hormone deficiency on the expression of the mRNAs encoding two alpha (alpha 1 and alpha 2)- and three beta (beta 2, beta 4, and beta 5)-tubulin isotypes in the developing cerebral hemispheres and cerebellum. The content of alpha 1, which markedly declines during development in both brain regions, is maintained at high levels in the hypothyroid cerebellum, whereas it is decreased in the cerebral hemispheres. The alpha 2 level also declines during development and is decreased in both regions by thyroid hormone deficiency, but only during the two first postnatal weeks. Thyroid hormone deficiency slightly increases at all stages the beta 2 level in the cerebellum, whereas a decrease is observed at early stages in the cerebral hemispheres. The beta 5 level seems to be independent of thyroid hormone in the cerebral hemispheres, whereas it decreases at early stages in the hypothyroid cerebellum. Finally, the expression of the brain-specific beta 4 isotype is markedly depressed by thyroid hormone deficiency, particularly in the cerebellum. These data suggest that the genes encoding the tubulin isotypes are, directly or not, differently regulated by thyroid hormone during brain development. This might contribute to abnormal neurite outgrowth seen in the hypothyroid brain and therefore to impairment in brain functions produced by thyroid hormone deficiency.  相似文献   

20.
We have used a panel of monoclonal antibodies in a study of the expression of multiple tubulins in Physarum polycephalum. Three anti-beta-tubulin monoclonal antibodies, DM1B, DM3B3 and KMX-1 all reacted with the beta 1-tubulin isotypes expressed in both myxamoebae and plasmodia. However, these antibodies showed a spectrum of reduced reactivity with the plasmodial beta 2-tubulin isotype - the competence of recognition of this isotype was graded DM1B greater than KMX-1 greater than DM3B3. The anti-alpha-tubulin monoclonal antibody, YOL 1/34 defined the full complement of Physarum alpha-tubulin isotypes, whilst the anti-alpha-tubulin monoclonal antibody, KMP-1 showed a remarkably high degree of isotype specificity. KMP-1 recognises all of the myxamoebal alpha 1-tubulin isotypes but only recognises 3 out of the 4 alpha 1-tubulin isotypes expressed in the plasmodium (which normally focus in the same 2D gel spot). KMP-1 does not recognise the plasmodial specific alpha 2-tubulin isotype. This monoclonal antibody reveals a new level of complexity amongst the tubulin isotypes expressed in Physarum and suggests that monoclonal antibodies are valuable probes for individual members of multi-tubulin families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号