首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.  相似文献   

2.
In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.  相似文献   

3.
SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.  相似文献   

4.
Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in β cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-13C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD+ ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying β cell insulin secretion.  相似文献   

5.

Background

Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates.

Methods and Results

To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity.

Conclusions

In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level.  相似文献   

6.
Fumarate hydratase (FH)-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP) that either generate NADPH (oxidative) or do not (non-oxidative), we utilized [U-13C]-glucose, [U-13C,15N]-glutamine, and [1,2- 13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α–ketoglutarate through to fumarate. [1,2- 13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66%) that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid synthesis for rapid proliferation and is essential for defense against increased oxidative stress. This increased NADPH producing PPP activity was shown to be a strong consistent feature in both fumarate hydratase deficient tumors and cell line models.  相似文献   

7.
We investigated the role of energy supplied by long-chain fatty acid oxidation in rat platelet function. Inhibition of the mitochondrial uptake of long-chain fatty acids was achieved by treating rats with 2-tetradecylglycidic acid (TDGA), a potent inhibitor of the overt form of carnitine palmitoyltransferase (CPT-I). The maximum aggregation rate (MAR), CPT-I activity, lactate production, oxygen consumption and adenine nucleotide content of isolated rat platelets were then studied in vitro. 4 h after the in vivo administration of TDGA, the CPT-I activity in saponin-permeabilized platelets was nearly completely inhibited along with a significant reduction in the MAR induced by ADP, thrombin and ionophore A23187. The ATP level, adenylate energy charge (ATP + 1/2 ADP)/(ATP + ADP + AMP) and ATP/ADP ratio in the platelet cytoplasmic pool were also reduced. Platelets from TDGA-treated rats showed lower oxygen consumption rates in both the basal respiratory and oxygen burst states. These results indicate that mitochondrial long-chain fatty acid oxidation coupled to oxidative phosphorylation is an important energy source in rat platelets and is probably involved in the maintenance of platelet function. Enhanced in vitro lactate production in platelets from TDGA-treated rats may have resulted from a compensatory increase in glycolysis which only partly compensated for impaired long-chain fatty acid oxidation.  相似文献   

8.
Summary This study examined the role of odd and even short-chain fatty acid substrates on aerobic and glycolytic metabolism in well-aerated primary cultures of rabbit renal proximal tubule cells (RPTC). Increasing oxygen delivery to primary cultures of RPTC by shaking the dishes (SHAKE) reduced total lactate levels and lactate dehydrogenase (LDH) activity and reduced net glucose consumption compared to RPTC cultured under standard conditions (STILL). The addition of butyrate, valerate, heptanoate, or octanoate to SHAKE RPTC produced variable effects on glycolytic metabolism. Although butyrate and heptanoate further reduced total lactate levels and net glucose consumption during short-term culture (<24 h), no fatty acid tested further reduced total lactate levels, net glucose consumption, or LDH activity during long-term culture (7 days). During the first 12 h of culture, maintenance of aerobic metabolism in SHAKE RPTC was dependent on medium supplementation with fatty acid substrates (2 mM). However, by 24 h, SHAKE RPTC did not require fatty acid substrates to maintain levels of aerobic metabolism equivalent to freshly isolated proximal tubules and greater than STILL RPTC. This suggests that SHAKE RPTC undergo adaptive changes between 12 and 24 h of culture, which give RPTC the ability to utilize other substrates for mitochondrial oxidation, therefore allowing greater expression of mitochondrial oxidative potential in SHAKE RPTC than in STILL RPTC.  相似文献   

9.
Adiponectin is one of the most abundant circulating hormones, which through adenosine monophosphate-activated protein kinase (AMPK), enhances fatty acid and glucose oxidation, and exerts a cardioprotective effect. However, its effects on cellular bioenergetics have not been explored. We have previously reported that 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, an AMPK activator) enhances mitochondrial respiration through a succinate dehydrogenase (SDH or complex II)-dependent mechanism in cardiac myocytes, leading us to predict that Adiponectin would exert a similar effect via activating AMPK. Our results show that Adiponectin enhances basal mitochondrial oxygen consumption rate (OCR), ATP production, and spare respiratory capacity (SRC), which were all abolished by the knockdown of AMPKγ1, inhibition of SDH complex assembly, via the knockdown of the SDH assembly factor 1 (Sdhaf1), or inhibition of SDH activity. Additionally, Adiponectin alleviated hypoxia-induced reductions in OCR and ATP production, in a Sdhaf1-dependent manner, whereas overexpression of Sdhaf1 confirmed its sufficiency for mediating these effects. Importantly, the levels of holoenzyme SDH under the various conditions correlated with OCR. We also show that the effects of Adiponectin, AMPK, Sdhaf1, as well as, SDH complex assembly all required sirtuin 3 (Sirt3). In conclusion, Adiponectin potentiates mitochondrial bioenergetics via promoting SDH complex assembly in an AMPK-, Sdhaf1-, and Sirt3-dependent fashion in cardiac myocytes.  相似文献   

10.
Although genetic and environmental factors contribute to neurodegenerative disease, the underlying etiology common to many diseases might be based on metabolic demand. Mitochondria are the main producer of ATP, but are also the major source of reactive oxygen species. Under normal conditions, these oxidants are neutralized; however, under environmental insult or genetic susceptibility conditions, oxidative stress may exceed cellular antioxidant capacities, leading to degeneration. We tested the hypothesis that loss in mitochondrial reserve capacity plays a causative role in neuronal degeneration and chose a cone photoreceptor cell line as our model. 661W cells were exposed to agents that mimic oxidant stress or calcium overload. Real-time changes in cellular metabolism were assessed using the multi-well Seahorse Biosciences XF24 analyzer that measures oxygen consumption (OCR) and extracellular acidification rates (ECAR). Cellular stress resulted in an early loss of mitochondrial reserve capacity, without affecting basal respiration; and ECAR was increased, representing a compensatory shift of ATP productions toward glycolysis. The degree of change in energy metabolism was correlated with the amount of subsequent cell death 24-hours post-treatment, the concentration-dependent loss in mitochondrial reserve capacity correlated with the number of live cells. Our data suggested first, that loss in mitochondrial reserve capacity is a major contributor in disease pathogenesis; and second, that the XF24 assay might represent a useful surrogate assay amenable to the screening of agents that protect against loss of mitochondrial reserve capacity. In future experiments, we will explore these concepts for the development of neuroprotective agents.  相似文献   

11.
While several transgenic mouse models exhibit improved contractile characteristics in the heart, less is known about how these changes influence energy metabolism, specifically the balance between carbohydrate and fatty acid oxidation. In the present study we examine glucose and fatty acid oxidation in transgenic mice, generated to overexpress sarco(endo)plasmic reticulum calcium-ATPase (SERCA), which have an enhanced contractile phenotype. Energy substrate metabolism was measured in isolated working hearts using radiolabeled glucose and palmitate. We also examined oxygen consumption to see whether SERCA overexpression is associated with increased oxygen utilization. Since SERCA is important in calcium handling within the cardiac myocyte, we examined cytosolic calcium transients in isolated myocytes using indo-1, and mitochondrial calcium levels using pericam, an adenovirally expressed, mitochondrially targeted ratiometric calcium indicator. Oxygen consumption did not differ between wild-type and SERCA groups; however, we were able to show an increased utilization of glucose for oxidative metabolism and a corresponding decreased utilization of fatty acids in the SERCA group. Cytosolic calcium transients were increased in myocytes isolated from SERCA mice, and they show a faster rate of decay of the calcium transient. With these observations we noted increased levels of mitochondrial calcium in the SERCA group, which was associated with an increase in the active form of the pyruvate dehydrogenase complex. Since an increase in mitochondrial calcium levels leads to activation of the pyruvate dehydrogenase complex (the rate-limiting step for carbohydrate oxidation), the increased glucose utilization observed in isolated perfused hearts in the SERCA group may reflect a higher level of mitochondrial calcium.  相似文献   

12.
13.
Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phoshate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.  相似文献   

14.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O(2) consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

15.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

16.
Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments.  相似文献   

17.
18.
The present study examined the acute effects of metformin on fatty acid (FA) metabolism in oxidative soleus (SOL) and glycolytic epitrochlearis (EPT) rodent muscle. SOL and EPT were incubated for either 30 or 180 min in the absence or presence of 2 mM metformin and with or without insulin (10 mU/ml). Metformin did not alter basal FA metabolism but countered the effects of insulin on FA oxidation and incorporation into triacylglyerol (TAG). Specifically, metformin prevented the insulin-induced suppression of FA oxidation in SOL but did not alter FA incorporation into lipid pools. In contrast, in EPT metformin blunted the incorporation of FA into TAG when insulin was present but did not alter FA oxidation. In SOL, metformin resulted in a 50% increase in AMP-activated protein kinase alpha2 activity and prevented the insulin-induced increase in malonyl-CoA content. In both fiber types, basal and insulin-stimulated glucose oxidation were not significantly altered by metformin. All effects were similar regardless of whether they were measured after 30 or 180 min. Because increased muscle lipid storage and impaired FA oxidation have been associated with insulin resistance in this tissue, the ability of metformin to reverse these abnormalities in muscle FA metabolism may be a part of the mechanism by which metformin improves glucose clearance and insulin sensitivity. The present data also suggest that increased glucose clearance is not due to its enhanced subsequent oxidation. Additional studies are warranted to determine whether chronic metformin treatment has similar effects on muscle FA metabolism.  相似文献   

19.
Vascular permeability factor (VPF) is mitogenic for bovine aortic endothelial (BAE) cells, whereas tumor necrosis factor (TNF) is cytostatic and was found to completely block the mitogenic response to VPF. In contrast to the apparently antagonistic mitogenic effects that these two factors elicit, chronic exposure of BAE cells to either VPF of TNF resulted in significant (about 3-fold) increases in the rates of hexose transport. The concentrations required for half-maximal stimulation were 2 ng/ml (40 pM) for TNF and 4 ng/ml (100 pM) for VPF. Exposure to both factors simultaneously resulted in a greater stimulation of transport (about 7-fold) than exposure to either factor alone. Northern blot analysis indicated that the amount of message for the GLUT-1/erythrocyte form of the glucose transporter was specifically increased by treatment with VPF (5-fold), TNF (25-fold), or to both cytokines together (35-fold). Expression of mRNAs for the insulin-sensitive muscle/adipose transporter (GLUT-4), brain/fetal skeletal muscle transporter (GLUT-3), or the hepatic transporter (GLUT-2) were not detected in either control or treated cells. Acute or chronic exposure to insulin (10(-9) to 10(-6) M) did not activate hexose transport in BAE cells. Thus, glucose transport in aortic endothelial cells can be up-regulated by either VPF, a growth stimulator, or by TNF, a growth inhibitor, but not by insulin. The additive effect of the two cytokines together may be important in the control of increased glucose metabolism at sites of inflammation.  相似文献   

20.
The yields of energy from oxidation of fatty acids, glucose, and glutamine were compared in cultures of chick embryo heart muscle (heart) and HeLa cells. Aerobic energy production, as measured by oxygen utilization, was comparable in the two cell types. In media containing dialyzed sera, the rates of incorporation of fatty acids directly into lipids were similar in both cells and accounted for > 97% of fatty acid metabolism in HeLa cells. However, in heart cells only 45% ended in lipid, 42% in protein, and 13% was released as CO2; the latter two products probably reflect the oxidation of fatty acids to acetyl-coenzyme A (-CoA) and its subsequent metabolism in the citrate cycle. Increased serum concentration in the medium did not affect fatty acid metabolism in HeLa cultures, but resulted in greater oxidation by heart cells (> 100 times that by HeLa cells). The metabolisms of both glucose and glutamine were similar in heart and HeLa cells with ? 60% of glucose carbon ending as medium lactate and only 3–5% converted to acetyl-CoA. About 25% of glutamine carbon ended as CO2 and increased utilizations with increasing serum concentrations was accountable in both cells by increased lactate from glucose and glutamate from glutamine. CO2 production (and energy) from glutamine was independent of glutamine concentration within a tenfold range of physiological concentrations. The yields of energy have been calculated. In 10% dialyzed calf serum, oxidation of glutamine carbon provided about half of the total energy in heart cells, glucose about 35–45%, with most coming from glycolysis; oxidation of fatty acid carbon provided only 5–10%. That > 90% of the aerobic energy comes from glutamine in both cells can account for the comparable rates of oxygen utilization. HeLa cells derived little or no energy from fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号