首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
1. Cultured neurons from embryonic chick sympathetic ganglia or dorsal root ganglia grow nerve fibers extensively on simple substrata containing fibronectin, collagens (types I, III, IV), and especially laminin. 2. The same neurons cultured on substrata containing glycosaminoglycans grow poorly. Glycosaminoglycans (heparin) inhibit nerve fiber growth on fibronectin substrata. 3. Proteolytic fragments of fibronectin support nerve fiber growth only when the cell attachment region is intact. For example, a 105 kD fragment, encompassing the cell attachment region, supports growth when immobilized in a substratum, but a 93 kD subfragment, lacking the cell attachment region, is unable to support fiber growth. When it is added to the culture medium, the 105 kD fragment inhibits fiber growth on substrata containing native fibronectin. 4. In culture medium lacking NGF, DRG neurons extend nerve fibers only on laminin and not on fibronectin, collagen or polylysine. Studies with radioiodinated laminin indicate that laminin binds with a relatively high affinity (kd approximately equal to 10(-9) M) to DRG neurons, and to a variety of other neural cells (NG108 cells, PC12 cells, rat astrocytes, chick optic lobe cells). We have isolated a membrane protein (67 kD) by affinity chromatography on laminin columns and are characterizing this putative laminin receptor. 5. Dissociated DRG neurons or ganglionic explants cultured on complex substrata consisting of tissue sections of CNS or PNS tissues extend nerve fibers onto the PNS (adult rat sciatic nerve) but not CNS (adult rat optic nerve) substrata. Other tissue substrata which support fiber growth in vivo (embryonic rat spinal cord, goldfish optic nerve) support growth in culture. While substrata from adult CNS, which support meager regeneration in vivo (adult rat spinal cord) support little fiber growth in culture. 6. Ganglionic explants cultured in a narrow space between a section of rat sciatic nerve and optic nerve grow preferentially onto the sciatic nerve suggesting that diffusible growth factors are not responsible for the differential growth on the two types of tissues. 7. Dissociated neurons adhere better to sections of sciatic nerve than optic nerve. Laminin, rather than fibronectin or heparan sulfate proteoglycan, is most consistently identifiable by immunocytochemistry in tissues (sciatic nerve, embryonic spinal cord, goldfish optic nerve) which support nerve fiber growth. Taken together, these data suggest that ECM adhesive proteins are important determinants of nerve regeneration.  相似文献   

2.
3.
The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt -/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt -/- mice develop fatal neurological defects. CNS and PNS analysis of cgt -/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt -/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes.  相似文献   

4.
Summary Transected ganglion cell axons from the adult retina are capable of reinnervating their central targets by growing into transplanted peripheral nerve (PN) segments. Injury of the optic nerve causes various metabolic and morphological changes in the retinal ganglion cell (RGC) perikarya and in the dendrites. The present work examined the dendritic trees of those ganglion cells surviving axotomy and of those whose severed axons re-elongated in PN grafts to reach either the superior colliculus (SC), transplanted SC, or transplanted autologous thigh muscle. The elaboration of the dendritic trees was visualized by means of the strongly fluorescent carbocyanine dye DiI, which is taken up by axons and transported to the cell bodies and from there to the dendritic branches. Alternatively, retinofugal axons regrowing through PN grafts were anterogradely filled from the eye cup with rhodamine B-isothiocyanate. The transection of the optic nerve resulted in characteristic changes in the ganglion cell dendrites, particularly in the degeneration of most of the terminal and preterminal dendritic branches. This occurred within the first 1 to 2 weeks following axotomy. The different types of ganglion cells appear to vary in their sensitivity to axotomy, as reflected by a rapid degeneration of certain cell dendrites after severance of the optic nerve. The most vulnerable cells were those with small perikarya and small dendritic fields (type II), whereas larger cells with larger dendritic fields (type I and III) were slower to respond and less dramatically affected. Regrowth of the lesioned axons in peripheral nerve grafts and reconnection of the retina with various tissues did not result in a significant immediate recovery of ganglion cell dendrites, although it did prevent some axotomized cells from further progression toward posttraumatic cell death.  相似文献   

5.
Nona  S.N.  Thomlinson  A.M.  Bartlett  C.A.  Scholes  J. 《Brain Cell Biology》2000,29(4):285-300
Fish optic nerve fibres quickly regenerate after injury, but the onset of remyelination is delayed until they reach the brain. This recapitulates the timetable of CNS myelinogenesis during development in vertebrate animals generally, and we have used the regenerating fish optic nerve to obtain evidence that it is the axons, not the myelinating glial cells, that determine when myelin formation begins. In fish, the site of an optic nerve injury becomes remyelinated by ectopic Schwann cells of unknown origin. We allowed these cells to become established and then used them as reporters to indicate the time course of pro-myelin signalling during a further round of axonal outgrowth following a second upstream lesion. Unlike in the mammalian PNS, the ectopic Schwann cells failed to respond to axotomy and to the initial outgrowth of new optic axons. They only began to divide after the axons had reached the brain. Shortly afterwards, small numbers of Schwann cells began to leave the dividing pool and form myelin sheaths. More followed gradually, so that by 3 months remyelination was almost completed and few dividing cells were left. Moreover, remyelination occurred synchronously throughout the optic nerve, with the same time course in the pre-existing Schwann cells, the new ones that colonised the second injury, and the CNS oligodendrocytes elsewhere. The optic axons are the only common structures that could synchronise myelin formation in these disparate glial populations. The responses of the ectopic Schwann cells suggest that they are controlled by the regenerating optic axons in two consecutive steps. First, they begin to proliferate when the growing axons reach the brain. Second, they leave the cell cycle to differentiate individually at widely different times during the ensuing 2 months, during the critical period when the initial rough pattern of axon terminals in the optic tectum becomes refined into an accurate map. We suggest that each axon signals individually for myelin ensheathment once it completes this process.  相似文献   

6.
The central nervous system (CNS), unlike the peripheral nervous system (PNS), is an immune-privileged site in which local immune responses are restricted. Whereas immune privilege in the intact CNS has been studied intensively, little is known about its effects after trauma. In this study, we examined the influence of CNS immune privilege on T cell response to central nerve injury. Immunocytochemistry revealed a significantly greater accumulation of endogenous T cells in the injured rat sciatic nerve than in the injured rat optic nerve (representing PNS and CNS white matter trauma, respectively). Use of the in situ terminal deoxytransferase-catalyzed DNA nick end labeling (TUNEL) procedure revealed extensive death of accumulating T cells in injured CNS nerves as well as in CNS nerves of rats with acute experimental autoimmune encephalomyelitis, but not in injured PNS nerves. Although Fas ligand (FasL) protein was expressed in white matter tissue of both systems, it was more pronounced in the CNS. Expression of major histocompatibility complex (MHC) class II antigens was found to be constitutive in the PNS, but in the CNS was induced only after injury. Our findings suggest that the T cell response to central nerve injury is restricted by the reduced expression of MHC class II antigens, the pronounced FasL expression, and the elimination of infiltrating lymphocytes through cell death.  相似文献   

7.
Neurochemical Characteristics of Myelin-like Structure in the Chick Retina   总被引:1,自引:1,他引:0  
Abstract: Certain characteristics of myelin-like structures in the chick retina were examined morphologically and biochemically. Developmental changes of 2', 3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) in the chick retina and optic nerve were examined. The measurable activity in the retina was first detected at 16 days of incubation and thereafter, it increased rapidly until 4 weeks post-hatching. By contrast, CNPase activity in the optic nerve reached the maximum level at 4 days post-hatching and maintained a constant level thereafter. The purifed myelin fraction from the chick retina showed higher activity of CNPase, whereas its activity in the retinal homogenate was very low. Hence, it was considered that the myelin fraction from the chick retina is similar to that of CNS myelin with respect to CNPase. Protein profiles of the purified myelin fractions isolated from the chick optic tectum, optic nerve, retina and sciatic nerve were analysed by SDS-polyacrylamide gel elec-trophoresis. Myelin fractions from the chick optic tectum and optic nerve contained basic protein (BP) and Folch-Lees proteolipid protein (PLP). Myelin fraction from the chick sciatic nerve contained BP, P2 and two glycoproteins (PO and 23K). In contrast, retinal myelin fraction contained only BP. PLP, PO, 23K and P2 proteins were definitely undetectable. Electron micrographs revealed that some axons in the optic nerve fiber layer of the chick retina were wrapped by a spiral-structured myelin-like sheath, which showed some differences from those of CNS and PNS myelin sheaths. It was suggested that the origin of the myelin-like structure in the chick retina is other than from oligodendroglia or Schwann cells.  相似文献   

8.
ABSTRACT: BACKGROUND: Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS). RESULTS: Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL) region of the lumbar spinal cord (LSC) in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM) resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. CONCLUSION: We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.  相似文献   

9.
In an effort to determine whether the “growth state” and the “mature state” of a neuron are differentiated by different programs of gene expression, we have compared the rapidly transported (group I) proteins in growing and nongrowing axons in rabbits. We observed two polypeptides (GAP-23 and GAP-43) which were of particular interest because of their apparent association with axon growth. GAP-43 was rapidly transported in the central nervous system (CNS) (retinal ganglion cell) axons of neonatal animals, but its relative amount declined precipitously with subsequent development. It could not be reinduced by axotomy of the adult optic nerves, which do not regenerate; however, it was induced after axotomy of an adult peripheral nervous system nerve (the hypoglossal nerve, which does regenerate) which transported only very low levels of GAP-43 before axotomy. The second polypeptide, GAP-23 followed the same pattern of growth-associated transport, except that it was transported at significant levels in uninjured adult hypoglossal nerves and not further induced by axotomy. These observations are consistent with the “GAP hypothesis” that the neuronal growth state can be defined as an altered program of gene expression exemplified in part by the expression of GAP genes whose products are involved in critical growth-specific functions. When interpreted in terms of GAP hypothesis, they lead to the following conclusions: (a) the growth state can be subdivided into a “synaptogenic state” characterized by the transport of GAP-23 but not GAP-43, and an “axon elongation state” requiring both GAPs; (b) with respect to the expression of GAP genes, regeneration involves a recapitulation of a neonatal state of the neuron; and (c) the failure of mammalian CNS neurons to express the GAP genes may underly the failure of CNS axons to regenerate after axon injury.  相似文献   

10.
Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, W1, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and W1 fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole LIS-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

11.
Summary The distribution of phosphorylated and nonphosphorylated neurofilament epitopes was determined immunocytochemically in adjacent 2 m-thick sections of sciatic nerve, ventral root and spinal cord. Staining was scored as either intense, moderate or absent and the proportion of labeled axons was calculated for each category. Nearly all sciatic nerve and ventral root axons were immunoreactive with both antibodies against phosphorylated and non-phosphorylated neurofilaments and there were no significant differences in the number of intensely- or moderately-labeled axons. Within the spinal cord however, while the majority of large caliber axons was stained with both antibodies, there was a significant number of small caliber axons which stained only with antibodies against phosphorylated neurofilaments. These results show that phosphorylated and nonphosphorylated neurofilaments are extensively codistributed in CNS and PNS axons, and that in the CNS, staining intensity for non-phosphorylated epitopes is less in the smaller axons.  相似文献   

12.
1. The responses of periphery (PNS) and central nervous systems (CNS) towards nerve injury are different: while injured mammalian periphery nerons can successfully undergo regeneration, axons in the central nervous system are usually not able to regenerate.2. In the present study, the genes which were differentially expressed in the PNS and CNS following nerve injury were identified and compared by microarray profiling techniques.3. Sciatic nerve crush and hemisection of the spinal cord of adult mice were used as the models for nerve injury in PNS and CNS respectively.4. It was found that of all the genes examined, 14% (80/588) showed changes in expression following either PNS or CNS injury, and only 3% (18/588) showed changes in both types of injuries.5. Among all the differentially expressed genes, only 8% (6/80) exhibited similar changes in gene expression (either up- or down-regulation) following injury in both PNS and CNS nerve injuries.6. Our results indicated that microarray expression profiling is an efficient and useful method to identify genes that are involved in the regeneration process following nerve injuries, and several genes which are differentially expressed in the PNS and/or CNS following nerve injuries were identified in the present study.  相似文献   

13.
Chronic injury to sensory axons in the rat peripheral nerve induces pathophysiologic changes in the axolemma at the cut nerve end, which are reflected in spontaneous ectopic impulse discharge and hyperexcitability to a range of depolarizing stimuli. We asked whether sensory axons injured in the central nervous system (CNS) also respond in this way. Primary afferent axons were severed in the sciatic nerve and, alternatively, in the midcervical or upper lumbar dorsal column (DC). Measurements of abnormal discharge from myelinated afferents showed high levels of spontaneous activity generated at the nerve injury site, especially during the period 3-16 days postoperatively, but comparatively little activity generated at the DC lesion site at any postoperative time. There was a corresponding difference in ectopic hyperexcitability to mechanical and adrenergic stimulation, and to depolarization with topical K+. DC lesion sites were not made more excitable by concurrent transection of the sciatic nerve, or by placing an autologous graft of excised sciatic nerve tissue into the DC defect at the time of initial surgery. Transection sites on dorsal roots L4 and L5 yielded abnormal discharge similar to that of sciatic nerve neuromas, indicating that the relative silence of DC transection sites was related to the CNS environment and not to position with respect to the sensory cell body.  相似文献   

14.
Myelin sheath is the proteolipid membrane wrapping the axons of CNS and PNS. We have shown data suggesting that CNS myelin conducts oxidative phosphorylation (OXPHOS), challenging its role in limiting the axonal energy expenditure. Here, we focused on PNS myelin. Samples were: (i) isolated myelin vesicles (IMV) from sciatic nerves, (ii) mitochondria from primary Schwann cell cultures, and (iii) sciatic nerve sections, from wild type or Charcot‐Marie‐Tooth type 1A (CMT1A) rats. The latter used as a model of dys‐demyelination. O2 consumption and activity of OXPHOS proteins from wild type (Wt) or CMT1A sciatic nerves showed some differences. In particular, O2 consumption by IMV from Wt and CMT1A 1‐month‐old rats was comparable, while it was severely impaired in IMV from adult affected animals. Mitochondria extracted from CMT1A Schwann cell did not show any dysfunction. Transmission electron microscopy studies demonstrated an increased mitochondrial density in dys‐demyelinated axons, as to compensate for the loss of respiration by myelin. Confocal immunohistochemistry showed the expression of OXPHOS proteins in the myelin sheath, both in Wt and dys‐demyelinated nerves. These revealed an abnormal morphology. Taken together these results support the idea that also PNS myelin conducts OXPHOS to sustain axonal function.  相似文献   

15.
Two polypeptides (M1 and M2) which co-sediment with F-actin in an ATP- reversible way have been detected in extracts of tissue from the rabbit visual system. Both polypeptides resemble skeletal muscle myosin in their ATP-sensitive co-sedimentation with actin, while they resemble the heavy chain of myosin and the lighter polypeptide of erythrocyte spectrin in their electrophoretic mobilities. (The estimated molecular weights are: MI congruent to 195,000; myosin congruent 200,000; M2 and spectrin congruent to 220,000). M1 and M2 were labeled in the cell bodies of the retinal ganglion cells with a radioactive amino acid and subsequently recovered in tissues (optic nerve, optic tract, lateral geniculate nucleus, and superior colliculus) containing segments of the retinal ganglion cell axons. The temporal sequence of labeling M1 and M2 in these tissues indicated that both polypeptides were synthesized in the cell bodies of retinal ganglion cells and subsequently transported down their axons at different maximum velocities. The estimated velocities were: M1, 4-8 mm per day; and M2, 2-4 mm per day.  相似文献   

16.
To clarify the presence of the Rho family of small GTPases p21-activated kinase (pak) signaling pathway in the PNS, we have examined their expression, the association between the small GTPases and pak and the pak kinase activity in the PNS using immunoblot analysis, immunohistochemistry, co-immunoprecipitation study, and in vitro kinase assay. Immunoblot analysis showed the expression of Rac, cdc42, RhoA and pak in the dorsal root ganglion (DRG) and sciatic nerve. The localization of these proteins in the DRG neurons and axons and Schwann cells of the sciatic nerve was confirmed by immunohistochemistry. Co-immunoprecipitation studies indicated the in vivo associations of pak with Rac and cdc42, but not with RhoA, in both the DRG and sciatic nerve. The autophosphorylation of pak and phosphorylation of histone H4 by pak were also found in the DRG and sciatic nerve as well as in the CNS. These results suggest that the Rac/cdc42-pak signaling pathway exists and functions in the PNS and may mediate some intracellular signals.  相似文献   

17.
Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively.  相似文献   

18.
The optic nerve, as a part of the central nervous system (CNS), has been used to study axonal transport for decades. The present study has concentrated on the axonal transport of synaptic vesicle proteins in the optic nerve, using the “stop-flow/nerve crush” method. After blocking fast axonal transport, distinct accumulations of synaptic vesicle proteins developed during the first hour after crush-operation and marked increases were observed up to 8 h postoperative. Semiquantitative analysis, using cytofluorimetric scanning (CFS) of immunoincubated sections, revealed that the ratio between distal accumulations (organelles in retrograde transport) and proximal accumulations (organelles in anterograde transport) was much higher (up to 80–90%) for the transmembrane proteins than that for surface adsorbed proteins (only 10–20%). The pattern of axonal transport in the optic nerve was comparable to that in the sciatic nerve. However, clathrin and Rab3a immunoreactivities were accumulated in much lower amounts than that in the sciatic nerve. Most synaptic vesicle proteins were colocalized in the axons proximal to the crush. A differential distribution of synaptobrevin I and II, however, was observed in the optic nerve axons; synaptobrevin I was present in large-sized axons, while synaptobrevin II immunoreactivity was present in most axons, including the large ones. The two isoforms were, thus, partially colocalized. The results demonstrate that (1) cytofluorimetric scanning techniques could be successfully used to study axonal transport not only in peripheral nerves, but also in the CNS; (2) synaptic vesicles are transported with fast axonal transport in this nerve; and (3) some differences were noted compared with the sciatic nerve, especially for Rab3a and clathrin. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 237–250, 1997.  相似文献   

19.
In this protocol, we describe the imaging of single axons in the rat optic nerve in vivo. Axons are labeled through the intravitreal injection of adeno-associated viral vectors (AAVs) expressing a fluorophore (duration of the procedure ~1 h). Two weeks after intravitreal injection, the optic nerve is surgically exposed (duration ~1 h) and labeled axons are imaged with an epifluorescence microscope either for up to 8 h or repetitively on the following days. Additionally, intravitreal injection of calcium-sensitive dyes allows for imaging of intra-axonal calcium kinetics. This procedure enables the analysis of the morphological changes of degenerating axons in the optic nerve in different lesion paradigms, such as optic nerve crush, axotomy or pin lesion. Furthermore, the effects of pharmacological manipulations on axonal stability and axonal calcium kinetics in axons of the central nervous system can be studied in vivo.  相似文献   

20.
Like other neurons of the central nervous system (CNS), retinal ganglion cells (RGCs) are normally unable to regenerate injured axons and instead undergo apoptotic cell death. This regenerative failure leads to lifelong visual deficits after optic nerve damage and is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as to an insufficient intrinsic ability for axonal regrowth. In addition to its ophthalmological relevance, the optic nerve has long been used as a favorable paradigm for studying regenerative failure in the CNS as a whole. Findings over the last 15 years have shown that, under certain circumstances, mature RGCs can be transformed into an active regenerative state enabling these neurons to survive axotomy and to regenerate axons in the optic nerve. Moreover, combinatorial treatments overcoming the inhibitory environment of the glial scar and optic nerve myelin, together with approaches activating the intrinsic growth program, can further enhance the amount of regeneration in vivo. These findings are encouraging and open the possibility that clinically meaningful regenerationmay become achievable in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号