首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The understorey beneath a canopy of the kelp Ecklonia radiata often contains juvenile sporophytes of the same species. When canopy disturbance occurs, these juvenile sporophytes are exposed to new environmental conditions. If these juvenile sporophytes survive these new conditions, then they become a ready source of kelps to rapidly form a new canopy. This study investigated the potential of pre-existing juvenile sporophytes of E. radiata to survive post-disturbance conditions and contribute to the rapid formation of a new canopy. The potential of canopy recovery by recruitment of kelp from zoospores was also investigated. These processes were studied at different times during the summer and on reefs ranging in topographic complexity from simple, flat reefs to highly complex, rugose reefs. By tagging juvenile sporophytes after the adult kelp canopy was removed and monitoring them through time, it was demonstrated that most juveniles (> 50%) survived the change in conditions after canopy loss, with some juveniles going on to become members of a new canopy. Approximately 6-47% of tagged sporophytes died within 3-4 days after canopy removal possibly due to excessive photoinhibition and photostress as demonstrated by changes in photosynthetic performance (decreased alpha values) of juveniles. The potential contribution of juvenile sporophytes to the rapid formation of a new canopy appears to be dependent on the timing of canopy removal with late summer-autumn canopy loss favouring faster recovery. Topographically complex reefs had less short-term (7 days) survival of juvenile sporophytes than topographically simple reefs; however this difference was not carried through to the long-term (6 months) abundance of adult kelp in experimental clearings, which was greater on topographically complex reefs. Clearly, juvenile sporophytes in arrested development under existing canopies of the small kelp E. radiata are important for the rapid recovery of the kelp canopy once adults are lost through physical disturbance.  相似文献   

2.
Spatial and temporal variation in the recruitment of the intertidal barnacle Chthamalus malayensis was examined over one year (September 2003-August 2004) on the equatorial shores of southern Peninsular Malaysia and Singapore. A nested sampling design was applied for the first time on these shores, over three spatial scales - hundreds of kilometres, kilometres to tens of kilometres and tens of metres - and temporal variation was determined through monthly sampling of recruits. Shores within 2° north of the equator on the East and West coasts of southern Peninsular Malaysia and the southern coast of Singapore were selected as study sites. Generally, all three coasts recruited throughout the year, with varying intensities. There was a clear regional pattern, where the largest number of recruits was found on the East Coast of Malaysia, and the least in Singapore. Analyses of variance (ANOVA) showed that variability occurred on the smallest scale, but only in nine of the twelve months examined, consequently resulting in significant temporal and spatial interaction. Calculated variance components indicated that small-scale variation accounted for most of the overall variability. The potential causes of the spatial and temporal patterns of C. malayensis recruitment, and implications on tropical-temperate comparisons will be discussed.  相似文献   

3.
1. In demographically open marine systems, the extent to which density-dependent processes in the benthic adult phase are required for population persistence is unclear. At one extreme, represented by the recruitment limitation hypothesis, larval supply may be insufficient for the total population size to reach a carrying capacity and density-independent mortality predominates. At the opposite extreme, populations are saturated and density-dependent mortality is sufficiently strong to reshape patterns established at settlement. 2. We examined temporal variation in the way density-independent and density-dependent mortality interact in a typical sessile marine benthic invertebrate, the acorn barnacle Semibalanus balanoides (L.), over a 2-year period. 3. Recruitment was manipulated at two high recruitment sites in north Wales, UK to produce recruit densities covering the range naturally found in this species. Following manipulation, fixed quadrats were monitored using digital photography and temporal changes in mortality and growth rate were examined. 4. Over a 2-year period there was a clear, spatially consistent, over-compensatory relationship between the density of recruits and adult abundance indicating strong density-dependent mortality. The strength of density dependence intensified with increasing recruitment. 5. Density-dependent mortality did not operate consistently over the study period. It only operated in the early part of the benthic phase, but the pattern of adult abundance generated was maintained throughout the whole 2-year period. Thus, early life-history processes dictated adult population abundance and dynamics. 6. Examination of the natural recruitment regime in the area of study indicated that both positive and negative effects of recruitment will occur over scales varying from kilometres to metres.  相似文献   

4.
The aim of this study was to investigate when adult distribution patterns are established in the barnacles Chthamalus stellatus and C. montagui. Adult ‘zones’ were identified by analysing field counts of both species at mid and upper shore heights. Monthly collections of cyprids, < 1 month old metamorphs and recruits (all metamorphosed individuals older than approximately 1 month) were made for C. stellatus and C. montagui in natural barnacle beds at six shores in SW Ireland. This was carried out over one year in 1996/1997, using a hierarchical sampling design. Abundance of total recruits (0-3 months old) was compared between adult zones after the main settlement season had ended. In addition, scales of variability in 0-3 month recruitment into adult zones were compared between the species at two scales: shores (1000s of metres) and sites within shores (10s of metres). Older recruits of each species, up to 11 months of age, were also compared between adult zones.The majority of settlement (measured as attached cyprids) occurred between August and October 1996. In October, there was no effect of adult zone on the abundance of total (0-3 month) recruitment up to that point in either species. Despite this homogeneity in recruitment between adult zones, significant spatial variation was found in 0-3 month recruits of both species at both of the scales examined. In C. stellatus the amount of variation associated with the larger scale (shore) was more than twice that of sites or of the residual variation (replicates within sites). 0-3 month recruitment in C. montagui was also most variable at the scale of shores but the residual variability (between replicates within site) was of similar magnitude to that of shores. Variability in 0-3 month C. montagui recruitment was relatively low at the scale of sites.There was a small but consistent input of recruits to adult zones over 9 months of the year, complicating the assessment of when adult patterns were set-up in these species. By June 1997, characteristic patterns of adult dominance had been established at all shores. Settlement had completely ceased by this time and individual barnacles were potentially 11 months old. Neither settlement nor early recruitment are significant in determining adult zonation patterns in these species. Instead, differential mortality patterns in individuals up to the age of 11 months are implicated in determining patterns of distribution of both species.  相似文献   

5.
Spatial and temporal variation in patterns of distribution and abundance of algal assemblages is large and often occurs at extremely small spatial and temporal scales. Despite this, few studies investigate interactions between these scales, that is, how patterns of spatial variation change through time. This study investigated a number of scales of spatial variation (from tens of centimetres to kilometres) in assemblages of intertidal and subtidal turfing algae. Significant differences were found in the composition and abundances of species in assemblages of turf at all spatial scales tested. Much of the variation among assemblages could, however, be explained at the scale of quadrats (tens of centimetres apart) (27±1.4 (SE)% of dissimilarity) with an additional 7±1.2% explained at the scale of sites (tens of metres apart) and 10±1.5% at the scale of locations (kilometres apart). Although the greatest dissimilarity in assemblages occurred at the scale of habitats, this accounted for a relatively small proportion of the overall variation in assemblages. These patterns were consistent through time, that is, at each sampling time the spatial scale explaining the greatest proportion of variation in assemblages was replicate quadrats separated by tens of centimetres. These patterns appear to be due to small-scale variation in patterns of distribution and abundances of the individual species that comprise turfing algal assemblages. The results of this experiment suggest that large scale processes have less effect on patterns of variability of algal assemblages than those occurring on relatively smaller spatial scales and that small-scale spatial variation should not be considered as simply “noise”.  相似文献   

6.
Vanderklift MA  Wernberg T 《Oecologia》2008,157(2):327-335
Trophic subsidies link habitats and can determine community structure in the subsidised habitats. Knowledge of the spatial extents of trophic interactions is important for understanding food webs, and for making spatial management practices more efficient. We demonstrate trophic linkages between detached (drift) fragments of the kelp Ecklonia radiata and the purple sea urchin Heliocidaris erythrogramma among discrete rocky reefs separated by kilometres. Sea urchins were abundant at one inshore reef, where the biomass of drift was usually high. There, sea urchins trapped detached kelp at high rates, although local kelp abundance was low. Most detached kelp present on the reef was retained by sea urchins. Detached seagrass, which was abundant on the reef, was not retained by sea urchins in large quantities. Experiments with tethered pieces of kelp showed that sea urchins only consumed detached fragments, and did not consume attached kelps. Comparisons of the morphology of detached fragments of kelp collected from the inshore reef to attached kelps from reefs further offshore showed that a large proportion (30-95%, varying among dates) of the fragments originated at distant reefs (>/=2 km away). At the inshore reef, the sea urchin H. erythrogramma is subsidised by detached kelps, and detached kelp fragments have been transported across landscapes. Cross-habitat resource subsidies therefore link discrete reef habitats separated by kilometres of non-reef habitat.  相似文献   

7.
Abstract. Ecklonia radiata (C. Agardh) J. Agardh kelp beds — a characteristic feature of the nearshore environment along the south‐west Australian coastline — contribute significantly to the coastal biodiversity in temperate Australia, yet, little is known about the organization of these macroalgal assemblages. By compiling existing and new data sets from habitat surveys, we have characterized and compared the structure of kelp‐associated macroalgal assemblages in three regions (Marmion Lagoon, Hamelin Bay and the marine environment neighbouring the Fitzgerald River National Park) across more than 1000 kilometres of the south‐west Australian coastline. 152 macroalgal taxa had been recognized within the three regions and this is in the range of species richness reported from other Australian and African kelp beds. The kelp‐associated algal assemblages were regionally distinct, 66% of all taxa were only found in one region and only 17 taxa were found in all three regions. Adjacent regions shared an additional 13–15 taxa. The regional shifts in assemblage structure were evident in species composition of both canopy and understorey. The organization of assemblages followed a spatial hierarchy where differences in assemblage structure were larger among regions (hundreds of kilometres apart) than among sites within regions (kilometres apart) and differences among sites within region were larger than differences among quadrats within sites (metres apart). Despite this hierarchy each level of nesting contributed approximately the same to total variation in assemblage structure and these spatial patterns were stronger than temporal differences from seasons to 2–3 years. Our results suggest that local and small‐scale processes contribute considerably to heterogeneity in macroalgal assemblages throughout south‐western Australia, and, in particular, our results are consistent with E. radiata exerting a strong influence on macroalgal assemblage structure. Further, our study contradicts the existence of a general south‐west Australian kelp assemblage, although a few species may form the core of E. radiata associations across regions.  相似文献   

8.
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.  相似文献   

9.
Young-of-the-year (YOY) kelp rockfish, Sebastes atrovirens, recruit initially to the canopy of the giant kelp, Macrocystis pyrifera (L.), along the coast of central California. During the summer of 1991, I observed major fluctuations in YOY kelp rockfish abundance in the canopy before the onset of a vertical migration downward to the Macrocystis holdfasts. Within the Macrocystis canopy, YOY kelp rockfish make a series of microhabitat shifts preparatory to their downward migration, forming smaller and more closely held aggregations. Experimental manipulations of Macrocystis architecture indicate that YOY kelp rockfish densities are reduced in areas with only small Macrocystis (few stipes) compared to unmanipulated areas with a range of Macrocystis sizes. Unusually large Macrocystis, created by binding multiple kelps together, did not compensate for a preponderance of small Macrocystis in the surrounding areas. In unmanipulated habitat, YOY kelp rockfish densities were correlated with the size of the Macrocystis (number of stipes). Habitat selection in the canopy and holdfasts appears to be behavioral and is closely tied to the architecture of the alga. The onset of the downward migration appears to be triggered by a combination of ontogenetic and environmental cues.  相似文献   

10.
The causes of spatial variation in the recruitment of benthic marine algae are frequently misunderstood because of difficulties in distinguishing among the many factors that influence the supply and establishment of microscopic propagules. We used the recently constructed San Clemente Artificial Reef (SCAR) experiment to examine the roles of dispersal distance, size of spore source, and habitat availability as sources of variation in the recruitment of the giant kelp Macrocystis pyrifera (L.) C. Ag., a species whose recruitment has often been considered to be dispersal limited. Sparse colonization on SCAR by adult Macrocystis occurred within 6 months after reef construction via drifters (i.e. individuals from neighboring kelp beds that became dislodged and set adrift). The abundance of drifters on SCAR declined exponentially with distance from the nearest source population (San Mateo), suggesting that San Mateo was the likely source of drifters. Dense recruitment of small Macrocystis sporophytes was observed within 8 months of reef construction. The density of recruits on SCAR showed an initial increase with distance from San Mateo before declining exponentially. Nonetheless, substantial recruitment was observed at the most distant locations on SCAR located 3.5 km from San Mateo. In contrast to drifters, the density of recruits was positively correlated to the bottom cover of artificial reef substrate. Importantly, no correlation was found between the local density or fecundity of drifters and the local density of kelp recruits suggesting that recruitment on SCAR resulted from widespread spore dispersal rather than from the local dispersal of spores from drifters.  相似文献   

11.
Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.  相似文献   

12.
Spatial variation in the recruitment of the intertidal barnacles Chthamalus montagui and Chthamalus stellatus was examined over an European scale. The study was carried out using standardised protocols at a series of locations. The five locations chosen (SW Ireland, NW Spain, SW Portugal and NW and NE Italy) span a large part of the range of these species in Europe. The spatial scales were location (hundreds of kilometres) and shore (thousands of metres).Estimates of total cumulative recruitment (cyprids and metamorphs) summed over the year (April 1997 to March 1998) showed substantial variation between locations which was dependent on the species. Recruitment was highest in SW Portugal for C. montagui and in SW Ireland and NW Spain for C. stellatus. Overall recruitment of C. montagui was higher than that of C. stellatus at all locations except SW Ireland, where recruitment of the two species was not significantly different. There were significant differences among shores in each location.The recruitment period of both species varied with location, with recruitment beginning earlier further south. In general, recruitment of C. montagui and C. stellatus was recorded in 8 months in NW Spain and NE Italy, while only in 7 months in SW Ireland. Recruitment of C. montagui occurred in 10 months in SW Portugal, but no recruits of C. stellatus were found. In all locations there was at least one distinct peak of recruitment. In SW Ireland both species showed only one peak of recruitment, a month after initiation. At the more southerly Atlantic locations, as well as in the Mediterranean, two unequal peaks of recruitment were generally seen. During recruit census, the number of cyprids, in comparison to metamorphs, found at any location was very low. In SW Ireland and NW Spain cyprids of both species were found, while in SW Portugal and in the Mediterranean, only cyprids of C. montagui were found.  相似文献   

13.
Abstract Turbo torquatus (hereafter Turbo) were abundant and patchily distributed, especially in algal dominated habitats in shallow water (less then 10 metres) on rocky reefs in central New South Wales, Australia. Although the assemblage of algae was similar in barrens with and without crevices, Turbo were most abundant in crevices, suggesting that shelter was important. Experimental removal of the kelp canopy resulted in a great decrease in the number of Turbo. This was despite cleared patches containing more filamentous food algae, further highlighting the importance of shelter. The density of Turbo in kelp forests ranged from six to seven per square metre in times of abundance and less then one per square metre at other times over a 12‐year period. Variation in the resource base (i.e. food algae and kelp cover) was strongly linked to the abundance of Turbo. Abundance of Turbo was lowest when the density of adult kelp was low (less than 14 plants per square metre). The condition of kelp was severely affected during the 1997–1998 and 2002 El Niño events and was compromised 2–4 years after each event. These pulse events and related loss of shelter probably contributed to a decline in abundance of Turbo. This model was further supported when Turbo abundance increased with a subsequent increase in the density of kelp.  相似文献   

14.
Associational resistance is the process by which plants may gain protection from spatial associations with neighbouring plants. We tested whether association with an unpalatable alga, Dictyopteris acrostichoides, affects the abundance and colonisation behaviour of the herbivorous amphipod Peramphithoe parmerong on its preferred host alga Sargassum linearifolium. Despite predictions, natural densities on S. linearifolium when surrounded by D. acrostichoides were higher than on isolated individuals of S. linearifolium. Colonisation experiments in the laboratory and the field tested the hypotheses that the observed variation in field abundance with algal neighbourhood was due to variation in the size of habitat patches, physical obstruction of host finding by D. acrostichoides and variation in the relative abundance of S. linearifolium and D. acrostichoides. None of these possible mechanisms was found to significantly alter rates of amphipod colonisation on the scales of individuals selecting among algal pieces in the laboratory or among habitat patches in the field. The failure of colonisation processes to explain observed variation in natural amphipod densities suggests that post-colonisation processes such as survival or emigration may vary with the spatial associations among algae.  相似文献   

15.
Population dynamics of many intertidal organisms are strongly affected by the abundance and distribution of larvae arriving on the shore. In particular, not only absolute numbers of settlers but also the degree of synchronisation of settlement can have a strong influence on whether density-dependent or density-independent processes shape adult shape populations. Temporal variation in rates of settlement and recruitment of the mussel Perna perna on the south coast of South Africa was investigated using a nested spatial design at different temporal scales. Variability in settlement at spring tides was examined at two temporal scales: lunar (to investigate the effect of state of the moon on settlement) and tidal (to investigate the influence of state of the tide on mussel settlement). Recruitment over neap tides was examined at one temporal scale, fortnight (to investigate the effect of date on mussel recruitment).Strong temporal variation was evident for both settlement and recruitment, but not at all time scales. Distinct peaks of settler/recruit abundance were observed during the lunar and neap tide studies. Recruitment intensity differed over the course of the year, and pulsing of recruitment was generally synchronised among locations. However, the strength of pulsing differed dramatically among locations, giving a significant interaction between fortnight and location. The finest temporal scale, investigated in the tidal study, did not reveal a significant effect of the state of the tide on settlement. The state of the moon (new or full) was not significant as a main factor (p = 0.052), although generally more settlers arrived on the shore during new moon. Phase of the moon appeared to have an effect on settler abundances, but only when and where densities were high.  相似文献   

16.
Debate on the control of population dynamics in reef fishes has centred on whether patterns in abundance are determined by the supply of planktonic recruits, or by post-recruitment processes. Recruitment limitation implies little or no regulation of the reef-associated population, and is supported by several experimental studies that failed to detect density dependence. Previous manipulations of population density have, however, focused on juveniles, and there have been no tests for density-dependent interactions among adult reef fishes. I tested for population regulation in Coryphopterus glaucofraenum, a small, short-lived goby that is common in the Caribbean. Adult density was manipulated on artificial reefs and adults were also monitored on reefs where they varied in density naturally. Survival of adult gobies showed a strong inverse relationship with their initial density across a realistic range of densities. Individually marked gobies, however, grew at similar rates across all densities, suggesting that density-dependent survival was not associated with depressed growth, and so may result from predation or parasitism rather than from food shortage. Like adult survival, the accumulation of new recruits on reefs was also much lower at high adult densities than at low densities. Suppression of recruitment by adults may occur because adults cause either reduced larval settlement or reduced early post-settlement survival. In summary, this study has documented a previously unrecorded regulatory mechanism for reef fish populations (density-dependent adult mortality) and provided a particularly strong example of a well-established mechanism (density-dependent recruitment). In combination, these two compensatory mechanisms have the potential to strongly regulate the abundance of this species, and rule out the control of abundance by the supply of recruits.  相似文献   

17.
Despite recent rapid increases in the occurrence of nonindigenous marine organisms in the marine environment, few studies have critically examined the invasion process for a marine species. Here we use manipulative experiments to examine processes of invasion for the Asian kelp Undaria pinnatifida (Harvey) Suringar at two sites on the east coast of Tasmania. Disturbance to reduce cover of the native algal canopy was found to be critical in the establishment of U. pinnatifida, while the presence of a stable native algal canopy inhibited invasion. In the first sporophyte growth season following disturbance of the canopy, U. pinnatifida recruited in high densities (up to 19 plants m−2) while remaining rare or absent in un-manipulated plots. The timing of disturbance was also important. U. pinnatifida recruited in higher densities in plots where the native canopy was removed immediately prior to the sporophyte growth season (winter 2000), compared with plots where the canopy was removed 6 months earlier during the period of spore release (spring 1999). Removal of the native canopy also resulted in a significant increase in cover of sediment on the substratum. In the second year following canopy removal, U. pinnatifida abundance declined significantly, associated with a substantial recovery of native canopy-forming species. A feature of the recovery of the native algal canopy was a significant shift in species composition. Species dominant prior to canopy removal showed little if any signs of recovery. The recovery was instead dominated by canopy-forming species that were either rare or absent in the study areas prior to manipulation of the canopy.  相似文献   

18.
19.
1. Spatial patterns in channel morphology and substratum composition at small (1–10 metres) and large scales (1–10 kilometres) were analysed to determine the influence of habitat heterogeneity on the distribution and abundance of larval lamprey. 2. We used a nested sampling design and multiple logistic regression to evaluate spatial heterogeneity in the abundance of larval Pacific lamprey, Lampetra tridentata, and habitat in 30 sites (each composed of twelve 1‐m2 quadrat samples) distributed throughout a 55‐km section of the Middle Fork John Day River, OR, U.SA. Statistical models predicting the relative abundance of larvae both among sites (large scale) and among samples (small scale) were ranked using Akaike's Information Criterion (AIC) to identify the ‘best approximating’ models from a set of a priori candidate models determined from the literature on larval lamprey habitat associations. 3. Stream habitat variables predicted patterns in larval abundance but played different roles at different spatial scales. The abundance of larvae at large scales was positively associated with water depth and open riparian canopy, whereas patchiness in larval occurrence at small scales was associated with low water velocity, channel‐unit morphology (pool habitats), and the availability of habitat suitable for burrowing. 4. Habitat variables explained variation in larval abundance at large and small scales, but locational factors, such as longitudinal position (river km) and sample location within the channel unit, explained additional variation in the logistic regression model. The results emphasise the need for spatially explicit analysis, both in examining fish habitat relationships and in developing conservation plans for declining fish populations.  相似文献   

20.
Abstract The diet of juveniles of Pelates sexlineatus was examined at six estuaries, separated by tens to hundreds of kilometres, and two sites within each estuary, separated by hundreds of metres to kilometres. Fish were collected in Zostera capricorni seagrass meadows along the coast of New South Wales (Australia). Spatial variability in diet was compared with the abundance of prey. Pelates sexlineatus had a broad diet (27 different prey) but generally preferred crustaceans (harpacticoid copepods, gammarid amphipods, ostracods and tanaids), although at some sites other prey items were important (e.g. polychaetes, nematodes and foraminiferans). Composition of the diet varied among estuaries and between sites. Proportional representation of the different size of prey eaten by the three sizes of juveniles (40‐ 54 , 55–74 and 75–94 mm standard length) was similar. Fish generally preferred prey smaller than 1 mm. Abundance of prey also varied at both spatial scales. At five of the 12 sites, there was a significant correlation between abundance of prey in the seagrass meadows and abundance of prey in the diet. Variation in the composition of the diet was partly explained by spatial variation in abundance of prey. When crustaceans were not abundant in the seagrass, P. sexlineatus had a broad diet, taking both benthic and planktonic prey items. It is concluded therefore that trophic linkages between P. sexlineatus and benthic invertebrates may vary greatly with spatial scales from hundreds of metres to hundreds of kilometres, and are strongly related to availability of prey in seagrass habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号