首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-step protocol for the induction of shoots from Alstroemeria leaf explants has been developed. Leaf explants with stem node tissue attached were incubated on shoot induction medium for 10 days, and then transferred to regeneration medium. Shoots from the area adjacent to the region between the leaf base and node tissue regenerated within 3 weeks after transfer to the regeneration medium, without a callus phase. The best induction was obtained with Murashige and Skoog medium containing 10 μm thidiazuron and 0.5 μm indole butyric acid. The regeneration medium contained 2.2 μm 6-benzylaminopurine. After several subcultures of the leaf explants with induced shoots, normal plantlets with rhizome were formed. In Alstroemeria, the percentage of responding leaf explants is more important than the number of shoots regenerated per leaf explant, because rhizome formation is the most important factor for micropropagation. The effect of other compounds in the induction medium, including glucose, sucrose, silver nitrate, and ancymidol, on regeneration was also investigated. Received: 14 June 1996 / Revision received: 27 September 1996 / Accepted: 20 October 1996  相似文献   

2.
A possible role of arabinogalactan proteins in control of shoot regeneration from stem explants of two citrus cultivars, Carrizo citrange and ‘Duncan’ grapefruit, was investigated. Treatment of explants with (β-d-Glc)3 Yariv phenylglycoside, able to bind specifically to AGPs, led to a decrease of cumulative regeneration potential of both Carrizo citrange and ‘Duncan’ grapefruit. For Carrizo, lower cumulative regeneration potential on (β-d-Glc)3 Yariv phenylglycoside-treated explants was the result of both lower number of shoots on the explants that had shoots (explant regeneration potential) and decreased percentage of explants with shoots. In the case of ‘Duncan’, treatment with (β-d-Glc)3 Yariv phenylglycoside reduced cumulative regeneration potential only by lowering the percentage of explants with shoots, but it did not affect the number of shoots on the explants with shoots. Citrus explants treated with (α-d-Man)3 Yariv phenylglycoside, which does not bind AGPs, responded similarly to untreated explants. Transformability of cells on the cut ends of explants was also lower for both cultivars following the treatment of explants with (β-d-Glc)3 Yariv phenylglycoside. Our data suggest that arabinogalactan proteins play important role in processes controlling differentiation and genetic transformation of citrus cells by Agrobacterium.  相似文献   

3.
Summary Factors affecting in vitro shoot production and regeneration of Cercis yunnanensis Hu et Cheng were investigated by comparing various growth regulators and explant types. For optimum shoot production from axillary buds, Murashige and Skoog (MS) media containing 6-benzyladenine, either alone or in combination with a low concentration of thidiazuron, resulted in the greatest number of shoots formed per explant (>3). Explants (2 mm long) containing one axillary bud placed in directcontact with the medium yielded the most shoots per bud (1.6) when grown on growth regulator-free medium. Root formation on 70–80% of shoot explants was accomplished using either indole-3-butyric acid or α-naphthaleneacetic acid in the medium, with significantly more roots formed on explants possessing and apical bud than those without the bud. Direct shoot organogenesis from leaf explants occurred on MS medium containing 10–30 μM thidiazuron, with up to 42% of leaf explants producing shoots.  相似文献   

4.
Dayaoshania cotinifolia W. T. Wang is a rare and endangered member of the Gesneriaceae family which is endemic to China. To conserve this species, an efficient in vitro propagation and regeneration system via shoot organogenesis was established from young leaf explants. Adventitious shoot induction was possible within 50–60 d on basal Murashige and Skoog medium supplemented with 1–3 μM 6-benzyladenine, although 5 μM 6-benzyladenine induced hyperhydricity. Basal medium containing 1–5 μM thidiazuron induced fewer shoots, while 1–5 μM α-naphthaleneacetic acid induced numerous adventitious roots and a few adventitious shoots. However, when thidiazuron and α-naphthaleneacetic acid were combined, both the induction percentage and number of shoots increased. Leaf explants cultured on induction medium supplemented with 1–5 μM 2,4-dichlorophenoxyacetic acid become necrotic and died. Induction medium supplemented with 1 μM α-naphthaleneacetic acid and 1–3 μM 6-benzyladenine was optimal for inducing adventitious shoots as was the combination of 1–3 μM thidiazuron and 1 μM α-naphthaleneacetic acid. Induction medium containing 2.0 μM 6-benzyladenine and 0.5 μM indole-3-acetic acid was optimal for the multiplication of adventitious shoots. Rooting was achieved on half-strength MS medium supplemented with 3.0 μM indole-3-acetic acid or α-naphthaleneacetic acid and 0.1% activated charcoal. Plantlets were transplanted to a mixture of sand, vermiculite, and humus (1:1:1); 92% survived. This protocol is a unique and effective means to micropropagate this rare and important plant and could serve as a solution for in vitro and ex vitro conservation.  相似文献   

5.
The effects of indole-3-butyric acid (IBA) alone and in combination with l-arginine on the morphogenic and biochemical responses in shoot tip explants of the cherry rootstock M × M 14 (Prunus avium × Prunus mahaleb) were examined. The maximum root number per rooted explant (16), root fresh (FW) and dry (DW) weights, as well as the rooting percentage (100 %) were recorded when 2 mg l?1 IBA (alone) were applied. Including the lowest IBA concentration (0.5 mg l?1) with the lowest and highest l-arginine concentrations (0.5 and 2 mg l?1, respectively) resulted in the greatest root length. The maximum leaf chlorophyll concentration and shoot length of the initial explant were recorded when 0.5 mg l?1 IBA plus 2 mg l?1 l-arginine were applied. In addition, l-arginine in combination with IBA (1 and 2 mg l?1) was found to suppress shoot FW and DW. On the other hand, l-arginine enhanced the promoting effect of IBA on both root length and leaf chlorophyll concentration. The carbohydrate and proline concentrations in leaves were not significantly altered with the application of IBA alone or in combination with l-arginine. On the other hand, the carbohydrate and proline concentrations in roots were decreased with the application of 1 and 2 mg l?1 IBA with l-arginine, resulting in the suppression of the promoting effects of IBA. It is clear from the findings that l-arginine has a direct effect on the in vitro rooting of M × M 14 explants, is involved in the function of the photosythetic apparatus, influences leaf chlorophyll content, participates in carbohydrate biosynthesis and metabolism, and is involved in proline accumulation both in leaves and roots.  相似文献   

6.
The effect of 6-benzylaminopurine (6-BA) alone or in combination with naphthaleneacetic acid or indoleacetic acid on the morphogenetic response of cotyledon explants of Citrullus colocynthis (L.) Schrad. was tested. The best results were obtained with a medium containing 25 μm 6-BA, which yielded organogenic calli at a frequency of 81.8%. When these organogenic calli were transferred to elongation medium (basal medium supplemented with 0.5 μm 6-BA), 80% produced well-developed shoots. These shoots rooted normally when cultured on rooting medium containing indolebutyric acid at 2.5 or 5.0 μm. Plants grew to maturity under greenhouse conditions and gave normal fruits. Cotyledon explants were transformed by cocultivation with Agrobacterium tumefaciens LBA4404 carrying the binary vector pBI121 which bears the reporter gene β-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII). Transformants were selected for growth capacity on medium with 100 mgl–1 of kanamycin. On the basis of β-glucuronidase expression, the transformation frequency was 14.2%. Molecular characterization by polymerase chain reaction confirmed the presence of the two genes transferred (gus, nptII) in the transgenic plants. Sexual transmission of both genes was also confirmed by studying their expression in progenies from several transgenic plants. Received: 9 May 1996 / Revision received: 3 December 1996 / Accepted: 20 January 1997  相似文献   

7.
The role of ethylene in shoot regeneration was investigated using transgenic Cucumis melo plants expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene. ACC oxidase catalyses the last step of ethylene biosynthesis. Leaf and cotyledon explants from the transgenic plants exhibited low ACC oxidase activity and ethylene production, whereas the regeneration capacity of the tissues was greatly enhanced (3.5- and 2.8-fold, respectively) compared to untransformed control tissues. Addition of ethylene released by 50 or 100 μm 2-chloroethylphosphonic acid dramatically reduced the shoot regeneration rate of the transgenic tissues. The results clearly demonstrate that ethylene plays an important role in C. melo morphogenesis in vitro. Received: 23 April 1997 / Revision received: 9 June 1997 / Accepted: 2 July 1997  相似文献   

8.

A highly efficient protocol for the induction of adventitious shoots from young internode and root explants of a semiparasitic medicinal herb Monochasma savatieri Franch ex Maxim was developed. MS basal medium supplemented with 5 µM thidiazuron (TDZ) induced 32 adventitious shoots/explant, which was double the number obtained using the same concentration of 6-benzyladenine (BA). Hyperhydric shoots were observed when 10 µM of any cytokinin was added to MS media. Use of any cytokinin at 2.5 µM produced an average of 14–21 adventitious shoots/root explant. Shoots formed roots in vitro more effectively than α-naphthaleneacetic acid when indole-3-butyric acid and indole-3-acetic acid were used at 1.0 µM. Two-month-old rooted plantlets were transplanted to vermiculite and 70% survived after 4 months.

  相似文献   

9.
Summary Protocols and media constituents for efficient in vitro plant regeneration of Native Spearmint (Mentha spicata L. cultivar ‘Native Spearmint’) have been defined. Adventitious shoots were initiated either directly from morphogenetically competent cells of explants or primary callus. Leaf explants from at least 2-mo.-old in vitro-maintained shoots exhibited the greatest morphogenetic capacity. Explants derived from basal portions of leaves at the bottom of the shoot were most responsive, with up to a 100% regeneration frequency and greater than nine shoots per explant. Highest frequency of meristemoids and morphogenetic callus were initiated from explants cultured onto a basal medium containing Murashige and Skoog (MS) salts, supplemented with 4 mg thidiazuron (TDZ) per L and 25% (vol/vol) coconut water (CW) for 10 to 14 d in darkness. Bud and shoot development required removal of both TDZ and CW from the medium. Shoot propagules were transferred to basal medium supplemented with 0.01 mg α-naphthaleneacetic acid (NAA) per L and grown under low light for about 2 wk to facilitate shoot elongation. Individual shoots about 1 cm tall were dissected and retransferred onto the same medium. Root initiation began within 4 to 6 d and a functional root system developed within 2 to 3 wk. These plantlets were transferred to soil and acclimated successfully for growth and development in a greenhouse. This is the first report of an efficient regeneration system for Native Spearmint based on adventitious organogenesis.  相似文献   

10.
In vitro anther-derived monoploids (2n=x=12) of Solanum phureja were compared for shoot regeneration from leaf and stem explants under various environmental conditions. Monoploids from the same or different diploid clones varied for frequency and earliness of shoot regeneration and number of shoots formed per explant. Leaf explants regenerated at higher frequencies than stem explants. Explants from stock plantlets subcultured at a 2- or 4-week interval regenerated earlier and at a higher frequency than those from plantlets subcultured at longer intervals. Regeneration frequency and number of shoots per explant were greater when explants were incubated at 20°C compared to 25°C. Explants from stock plantlets maintained under a 16 h as opposed to an 11 h photoperiod exhibited increased shoot regeneration; however, neither photoperiod nor the maintenance temperature of the stock plantlets influenced regeneration frequency. Genotypic differences were observed for the frequency of chromosome doubling among regenerated shoots whereas temperature treatments had no influence on chromosome doubling.Abbreviations BA benzyladenine - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA -naphthale-neacetic acid  相似文献   

11.
Summary Several experiments were carried out to develop protocols for the in vitro propagation of pummelo (Citrus grandis L. Osbeck) using shoot-tip explants from seedlings. Murashige and Skoog (MS) medium supplemented with various concentrations of 6-benzylaminopurine (BA) and thidiazuron (TDZ), singly or in combination with α-naphthaleneacetic acid (NAA), was used to determine the rate of shoot proliferation. The response of explants to all concentrations of TDZ was very poor. After 6 wk culture, the most adventitious shoots per explant (average 5.2) were obtained on medium supplemented with 1.8 μM BA. NAA with cytokinin in the medium did not improve the rate of shoot multiplication significantly. Addition of 5.8 μM gibberellic acid in shoot-proliferation medium during the second subculture improved shoot elongation significantly. Shoot multiplication increased 3.5-fold in each successive subculture. NAA was superior to indolebutyric acid for in vitro root induction. Over 75% of the shoots developed roots when transferred to half-strength MS medium with 1.3, 2.7, or 5.4 μM NAA.  相似文献   

12.
Adventitious roots were induced from shoots and leaves of the chimera plant TCC (LI-LII-LIII = TCC; T = Tuber mustard, C = Red Cabbage), previously developed by in vitro grafting of tuber mustard (Brassica juncea) and red cabbage (B. oleracea). The regeneration frequency of adventitious roots from TCC shoots and leaf sections was markedly higher than that obtained from the parents TTT (tuber mustard) and CCC (red cabbage). Moreover, levels of α-naphthaleneacetic acid in the culture medium had lower effects on rooting efficiency of TCC chimeras compared to those of TTT and CCC. The number and fresh weight of adventitious roots per TCC shoot, 13.11 roots and 0.274 g, respectively, were also significantly higher than those of the parents. This demonstrated that replacing the histogenic LI layer (the outermost apical cell layer) with a different genotype might improve adventitious root induction capability of these vegetative tissues due to likely synergistic effects between LI and the other two histogenic layers, LII and LIII. Following polymerase chain reaction analysis and histological investigation, it was found that these adventitious roots originated from the LIII histogenic layer.  相似文献   

13.
Leaf, cotyledon, and hypocotyl explants were obtained from 3-week-old seedlings of open-pollinated ‘Golden Delicious’ (Malus domestica bork H.) grown in vitro. They were placed on modified Murashige and Skoog (MS) medium containing B5 vitamins, sucrose and agar, supplemented with 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA), and maintained at 25°C±2 in the light or in the dark to assess morphogenetic responses. Leaf and cotyledon explants cultured in the dark for an initial 3 weeks, then transferred to light for 4 weeks, produced 5- to 20-fold more adventitious shoots than those cultured for 7 weeks in the light. Conversely, light did not significantly influence the number of adventitious shoots formed on hypocotyl explants. Five-minute daily exposures of leaf explants to red light (651 nm) suppressed adventitious shoot formation by 80%; five-minute exposure to far-red light (729 nm) immediately following the red light counteracted the red suppression. Seedling explants, immature fruit halves and immature embryos were also cultured on Schenk and Hildebrandt (SH) medium containing 2, 4-dichlorophenoxyacetic acid (2, 4-D), p-chlorophenoxyacetic acid (CPA) and kinetin. Light inhibited callus formation on leaf and cotyledon explants, but not on hypocotyl explants. The derived callus was placed on MS + BAP or MS + BAP + NAA for shoot regeneration. Both shoots and roots regenerated from callus placed in the dark but not in the light; the frequency of shoot regeneration was 5% or less. Regenerated shoots were rooted on MS macronutrient salts (1/3 concentration), micronutrients, i-inositol, thiamine HCl, sucrose and agar with or without indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), or NAA under a light intensity of 5.0 W.m-2 (16 h per day). Auxin concentration strongly influenced root morphology.  相似文献   

14.
The influence of 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and thidiazuron (TDZ) on direct rhizome induction and shoot formation from rhizome explants of Cymbidium goeringii was explored. Rhizome segments obtained from in vitro seed cultures of C. goeringii were placed on Murashige and Skoog (MS) medium incorporated with 5, 10, 20, or 40 µM 2,4-D and 1, 2, 4, or 8 µM BA or TDZ alone or in combination with 20 µM 2,4-D. The explants developed only rhizomes on MS medium with or without 2,4-D. The highest percent of rhizome formation (100%) was obtained on MS medium incorporated with 20 μM of 2,4-D. The morphology and number of rhizomes varied with the level of 2,4-D in the medium. Direct adventitious shoot formation was achieved on medium incorporated with BA or TDZ. The adventitious shoots produced per explant significantly increased with the supplementation of 2,4-D to cytokinin-containing medium. The highest mean of 21.8 ± 1.8 shoot buds per rhizome segment was obtained in medium fortified with 20 μM 2,4-D and 2 μM TDZ. The greatest percent of root induction (100%) and the mean of 5.3 ± 1.1 roots per shoot were achieved on ½ MS medium incorporated with 2 μM of α-naphthaleneacetic acid. About 97% of the in vitro-produced plantlets acclimatized in the greenhouse. An efficient in vitro propagation protocol was thus developed for C. goeringii using rhizome explants.  相似文献   

15.
Ochna integerrima is a medicinal and ornamental plant in Southeastern Asia. It has been listed as a rare and endangered species in China. Here we studied the effects of plant growth regulators and their concentrations on the induction of somatic embryogenesis and shoot organogenesis from leaf and shoot explants of O. integerrima for the first time. Cytokinins played a crucial role in somatic embryogenesis and shoot organogenesis. Among them, a higher concentration of thidiazuron (10.0–15.0 μM TDZ) could induce both somatic embryogenesis and adventitious shoot formation whereas low concentrations of TDZ (5.0 μM) could only induce adventitious shoots. However, 6-benzyladenine (BA at 5–15 μM) could only induce adventitious shoots. Shoot explants induced more adventitious shoots and somatic embryos than leaf explants when cultured on medium with the same concentration (5–15 μM) of TDZ or 15 μM BA. Medium containing 0.5 μM α-naphthaleneacetic acid and 8 μM indole-3-butyric acid and 0.1% activated charcoal could induce adventitious roots within 1 month. An efficient mass propagation and regeneration system has been established.  相似文献   

16.
The technique of trees production from the undifferentiated poplar callus tissue is described. The best root formation was observed on the modifiedWolter andSkoog medium when NAA in concentration 0.2 to 0.4 mg l?1 was used as an auxin and cytokinins were omitted. The induction of leafy shoots from the undifferentiated callus was the most effective on the modifiedLinsmaier andSkoog medium in the absence of auxin and with 0.15 to 0.70 mg l?1 of BAP. The best development of roots at the basal end of excised shoots was achieved when shoots were transferred into the sterile mixture of perlit and sand (3: l, v/v) containing a modifiedWolter andSkoog medium.  相似文献   

17.
In order to optimize shoot regeneration in Kalancho? blossfeldiana, leaf and internode explants of seven cultivars including one inter-specific were studied. The effects of various combinations of α-naphthalene acetic acid (NAA) (0, 0.57 M) and thidiazuron (TDZ) (0, 0.45, 4.5, 22.5, 67.5 μM) on MS medium were examined. In all cultivars shoot regeneration frequency and number of shoots per explant were enhanced by increasing TDZ concentration. Supplementing the media with NAA did not improve shoot regeneration. Maximum regeneration frequency and optimum concentration of TDZ for shoot regeneration depended significantly on the cultivar. Internode explants, but not leaf explants, of some cultivars, were able to produce adventitious shoots without treatment with growth regulator.  相似文献   

18.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of transgene technology to the improvement of sugar beet germplasms. Several commercially important sugar beet breeding lines (SDM, 3, 5, 8, 9, 10, 11, HB 526, and CMS 22003) and commercial varieties (Roberta and Gala) were tested for their regeneration capacity through adventitious shoot organogenesis from cotyledons, hypocotyls, root/hypocotyl/shoot transition zone tissues, and leaf lamina and petiole via an intervening callus phase. Callus induction and adventitious shoot regeneration was dependent on genotype and combinations of plant growth regulators. With cotyledon or hypocotyl explants, SDM 3 and 10 showed a better response on adventitious shoot regeneration in medium containing benzyladenine (BA) and 2,3,5-triiodobenzoic acid or 1-naphthaleneacetic acid (NAA) than SDM 11, 5, and 9. Shoot regeneration was obtained from hypocytyl-root or hypocotyl-shoot transition zone tissue in SDM 9, 10, and HB 526 grown on PGo medium supplemented with BA to induce callus, and the regeneration frequency was 25%. Adventitious shoots were also regenerated from leaf explants of SDM 3 and 9 cultured on medium containing NAA for callus induction and BA and NAA to induce shoot regeneration, and in SDM 10 and CSM 22003 cultured on medium containing BA for callus induction and to induce shoot regeneration.  相似文献   

19.

Key message

Efficient Agrobacterium -mediated genetic transformation for investigation of genetic and molecular mechanisms involved in inflorescence architectures in Cornus species.

Abstract

Cornus canadensis is a subshrub species in Cornus, Cornaceae. It has recently become a favored non-model plant species to study genes involved in development and evolution of inflorescence architectures in Cornaceae. Here, we report an effective protocol of plant regeneration and genetic transformation of C. canadensis. We use young inflorescence buds as explants to efficiently induce calli and multiple adventitious shoots on an optimized induction medium consisting of basal MS medium supplemented with 1 mg/l of 6-benzylaminopurine and 0.1 mg/l of 1-naphthaleneacetic acid. On the same medium, primary adventitious shoots can produce a large number of secondary adventitious shoots. Using leaves of 8-week-old secondary shoots as explants, GFP as a reporter gene controlled by 35S promoter and hygromycin B as the selection antibiotic, a standard procedure including pre-culture of explants, infection, co-cultivation, resting and selection has been developed to transform C. canadensis via Agrobacterium strain EHA105-mediated transformation. Under a strict selection condition using 14 mg/l hygromycin B, approximately 5 % explants infected by Agrobacterium produce resistant calli, from which clusters of adventitious shoots are induced. On an optimized rooting medium consisting of basal MS medium supplemented with 0.1 mg/l of indole-3-butyric acid and 7 mg/l hygromycin B, most of the resistant shoots develop adventitious roots to form complete transgenic plantlets, which can grow normally in soil. RT-PCR analysis demonstrates the expression of GFP transgene. Green fluorescence emitted by GFP is observed in transgenic calli, roots and cells of transgenic leaves under both stereo fluorescence microscope and confocal microscope. The success of genetic transformation provides an appropriate platform to investigate the molecular mechanisms by which the various inflorescence forms are developed in Cornus plants.  相似文献   

20.
Alternative methods of in vitro cloning that involve both adventitious (direct) and callus intermediate (indirect) pathways were investigated for the endangered species Lilium pumilum. Plantlet regeneration was obtained from leaf explants, cultured on Murashige and Skoog (MS) basal medium supplemented with various combinations of auxins and cytokinins at different concentrations. About 30% of the explants directly formed adventitious shoots on MS medium containing 8.88 μM 6-benzyladenine (BA) and 2.69 μM α-naphthaleneacetic acid (NAA). For production of regenerable callus, callus formation followed by shoot induction was best when explants were initially cultured on MS medium supplemented with 9.05 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Regenerable calli were yellow or purple and readily regenerated shoots when subcultured onto MS medium containing 2.22 μM BA and 1.61 μM NAA. About 78% of the calli were able to produce adventitious shoots. Shoots were rooted on half-strength MS medium supplemented with 1.34 μM NAA and were successfully acclimatized to greenhouse conditions. This report describes an efficient method for the in vitro multiplication of whole plants from leaf explants of the endangered species L. pumilum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号