首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
In essence, the mitotic cell cycle in eukaryotes involves the duplication and separation of chromosomes, coupled to the process of dividing one cell into two. Cytokinesis is therefore the culmination of a series of events that were triggered during G1 phase, and brings the daughter cells back to the starting position in G1 for another possible round of division. In all eukaryotes, progression through the cell cycle is controlled by cyclin-dependent kinases that bind to positive regulators called cyclins. This review explores some of the pathways that trigger the plant cell cycle, with emphasis on the G1 phase. Examples include signalling pathways involving glutathione and cellular redox potential, the possible existence of a G1 DNA-damage checkpoint, and the plant hormones auxin and cytokinin. Progress in understanding the link between cell proliferation, cell differentiation and the cell-cycle machinery in a developmental context is discussed.  相似文献   

3.
Progression through the cell cycle is central to cell proliferation and fundamental to the growth and development of all multicellular organisms, including higher plants. The periodic activation of complexes containing cyclins and cyclin-dependent kinases mediates the temporal regulation of the cell-cycle transitions. Here, we highlight recent advances in the molecular controls of the cell cycle in plant cells, with special emphasis on how hormonal signals can modulate the regulation of cyclin-dependent kinases.  相似文献   

4.
Yu Y  Steinmetz A  Meyer D  Brown S  Shen WH 《The Plant cell》2003,15(12):2763-2777
Although most of the components of the cell cycle machinery are conserved in all eukaryotes, plants differ strikingly from animals by the absence of a homolog of E-type cyclin, an important regulator involved in G1/S-checkpoint control in animals. By contrast, plants contain a complex range of A-type cyclins, with no fewer than 10 members in Arabidopsis. We previously identified the tobacco A-type cyclin Nicta;CYCA3;2 as an early G1/S-activated gene. Here, we show that antisense expression of Nicta;CYCA3;2 in tobacco plants induces defects in embryo formation and impairs callus formation from leaf explants. The green fluorescent protein (GFP)-Nicta;CYCA3;2 fusion protein was localized in the nucleoplasm. Transgenic tobacco plants overproducing GFP-Nicta;CYCA3;2 could not be regenerated from leaf disc transformation, whereas some transgenic Arabidopsis plants were obtained by the floral-dip transformation method. Arabidopsis plants that overproduce GFP-Nicta;CYCA3;2 showed reduced cell differentiation and endoreplication and a dramatically modified morphology. Calli regenerated from leaf explants of these transgenic Arabidopsis plants were defective in shoot and root regeneration. We propose that Nicta;CYCA3;2 has important functions, analogous to those of cyclin E in animals, in the control of plant cell division and differentiation.  相似文献   

5.
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin–proteasome pathway.  相似文献   

6.
The development of multicellular organisms relies on the temporal and spatial control of cell proliferation and cell growth. The relationship between cell-cycle progression and development is complex and characterized by mutual dependencies. On the level of the individual cell, this interrelationship has implications for pattern formation and cell morphogenesis. On a supercellular level, this interrelationship affects meristem function and organ growth. Often, developmental signals not only direct cell-cycle progression but also set the frame for cell-cycle regulation by determining cell-type-specific cell-cycle modes. In other cases, however, cell-cycle progression appears to be required for the further differentiation of some cell types. There are also examples in which cell cycle and differentiation seem to be controlled at the same level and progress rather independently from each other or are linked by the same regulator or pathway. Furthermore, different relationships between cell cycle and differentiation can be combined in a succession of events during development, leading to complex developmental programs.  相似文献   

7.
8.
Multicellular organisms need to modulate proliferation and differentiation in response to external conditions. An important role in these processes plays the mitogen-stimulated induction of cyclin D (cycD) gene expression. D-type cyclins have been identified as the crucial intracellular sensors for cell-cycle regulation in all eukaryotes. However, cycD deletions have been found to cause specific phenotypic alterations in animals but not yet in plants. An insertional mutation of a so far uncharacterized Arabidopsis cycD gene did not alter the plant phenotype. To gain new insights into CycD function of land plants, we generated targeted cycD gene knockouts in the moss Physcomitrella patens and observed a surprisingly limited disruption phenotype. While wild-type plants reacted to exogenous glucose sources with prolonged growth of juvenile stages and retarded differentiation, cycD knockouts exhibited developmental progression independent of sugar supply. On the other hand, growth rate, cell sizes or plant size were not affected. Thus, we conclude that Physcomitrella CycD might not be essential for cell-cycle regulation but is important for coupling the developmental progression to nutrient availability.  相似文献   

9.
Meiosis is often described as a special case of cell division since it differs from mitosis in having two nuclear divisions without an intervening S-phase. It will be of great interest to uncover what molecular mechanisms underlie these special features of meiosis. We previously reported that the tardy asynchronous meiosis (tam) mutant of Arabidopsis (Arabidopsis thaliana) is slower in cell cycle progression in male meiosis. Here we report that TAM encodes the A-type cyclin, CYCA1;2. The point mutation in tam replaced a conserved threonine with an isoleucine in the linker region between the alpha4 and alpha5 helices of the first cyclin fold. By studying the dynamics of a CYCA1;2-green fluorescent protein fusion protein under the control of the CYCA1;2 promoter, we found that the fusion protein was most abundant at pachytene, but was undetectable from late prophase I until telophase II. Nonetheless, cell cycle progression in tam was delayed in both pachytene and meiosis II. We conclude either that the CYCA1;2 produced in prophase I indirectly regulates meiosis II progression, or that a very low level of CYCA1;2 directly regulates meiosis II progression. Either of these scenarios is a deviation from the typical mode of action of mitotic cyclins in mitosis and meiosis I, in which each nuclear division is coupled with a peak of expression of mitotic cyclins.  相似文献   

10.
11.
12.
13.
14.
15.
Parrish JJ  Kim CI  Bae IH 《Theriogenology》1992,38(2):277-296
Genetic and biochemical approaches have contributed to an explosion of literature on cell-cycle control. Regulation of the cell-cycle is controlled by a series of kinases and phosphatases. Key control points are during the G(1)-S and G(2)-M transitions. During both transitions, cyclins interact with a specific kinase to allow a cell to pass through that phase. The meiotic maturation of oocytes, fertilization and embryo development are all events influenced by cell-cycle regulation. Understanding cell-cycle control should provide new ways for gamete and embryo biologists to approach culture and development problems.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号