首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae strains with a disrupted RAS1 gene and with an intact RAS2 gene (ras1- RAS2 strains) grew well on both fermentable and nonfermentable carbon sources. By constructing isogenic mutants having a disrupted RAS1 locus and a randomly mutagenized chromosomal RAS2 gene, we obtained yeast strains with specific growth defects. The strain TS1 was unable to grow on nonfermentable carbon sources and galactose at 37 degrees C, while it could grow on glucose at the same temperature. The mutated RAS2 gene in TS1 cells encoded a protein with the glycines at positions 82 and 84 replaced by serine and arginine respectively. Both mutations were necessary for temperature sensitivity. We also isolated a mutant yeast that was unable to grow on nonfermentable carbon sources both at 30 and 37 degrees C, while growing on glucose at both temperatures. This phenotype was caused by a single chromosomal mutation, leading to the replacement of aspartic acid 40 of the RAS2 protein by asparagine. A ras1- yeast strain with a chromosomal RAS2 gene harbouring the three mutations together did not grow at any temperature using non-fermentable carbon sources, but it was able to grow on glucose at 30 degrees C, and not at 37 degrees C. The mutated proteins were much less effective than the wild-type RAS2 protein in the stimulation of adenylate cyclase, but were efficiently expressed in vivo. The possible roles of residues 40, 82 and 84 of the RAS2 protein in the regulation of adenylate cyclase are discussed.  相似文献   

2.
In yeast, RAS proteins are controlling elements of adenylate cyclase   总被引:212,自引:0,他引:212  
S. cerevisiae strains containing RAS2val19, a RAS2 gene with a missense mutation analogous to one that activates the transforming potential of mammalian ras genes, have growth and biochemical properties strikingly similar to yeast strains carrying IAC or bcy1. Yeast strains carrying the IAC mutation have elevated levels of adenylate cyclase activity. bcy1 is a mutation that suppresses the lethality in adenylate cyclase deficient yeast. Yeast strains deficient in RAS function exhibit properties similar to adenylate cyclase deficient yeast. bcy1 suppresses lethality in ras1- ras2- yeast. Compared to wild-type yeast strains, intracellular cyclic AMP levels are significantly elevated in RAS2val19 strains, significantly depressed in ras2- strains, and virtually undetectable in ras1- ras2- bcy1 strains. Membranes from ras1- ras2- bcy1 yeast lack the GTP-stimulated adenylate cyclase activity present in membranes from wild-type cells, and membranes from RAS2val19 yeast strains have elevated levels of an apparently GTP-independent adenylate cyclase activity. Mixing membranes from ras1- ras2- yeast with membranes from adenylate cyclase deficient yeast reconstitutes a GTP-dependent adenylate cyclase.  相似文献   

3.
Conservative amino acid substitutions were introduced into the proposed effector regions of both mammalian Ha-ras (residues 32 to 40) and Saccharomyces cerevisiae RAS2 (residues 39 to 47) proteins. The RAS2[Ser 42] protein had reduced biological function in the yeast S. cerevisiae. A S. cerevisiae strain with a second-site suppressor mutation, SSR2-1, was isolated which could grow on nonfermentable carbon sources when the endogenous RAS2 protein was replaced by the RAS2[Ser 42] protein. The SSR2-1 mutation was mapped to the structural gene for adenylate cyclase (CYR1), and the gene containing SSR2-1 was cloned and sequenced. SSR2-1 corresponded to a point mutation that would create an amino acid substitution of a tyrosine residue for an aspartate residue at position 1547. The SSR2-1 gene encodes an adenylate cyclase that is dependent on ras proteins for activity, but is stimulated by Ha-ras and RAS2 mutant proteins that are unable to stimulate wild-type adenylate cyclase.  相似文献   

4.
In the yeast Saccharomyces cerevisiae, the activation of adenylate cyclase requires the products of the RAS genes and of CDC25. We isolated several dominant extragenic suppressors of the yeast cdc25 mutation. They did not suppress a thermosensitive allele of the adenylate cyclase gene (CDC35). One of these suppressors was a mutated RAS2 gene in which the transition C/G----T/A at position 455 resulted in replacement of threonine 152 by isoleucine in the protein. The same mutation in a v-Ha-ras gene reduces the affinity of p21 for guanine nucleotides (L.A. Feig, B. Pan, T.M. Roberts, and G.M. Cooper, Proc. Natl. Acad. Sci. USA 83:4607-4611, 1986). These results support a model in which the CDC25 gene product is the GDP-GTP exchange factor regulating the activity of the RAS gene product.  相似文献   

5.
Saccharomyces cerevisiae expresses two RAS gene products (RAS1 and RAS2) highly homologous to mammalian p21ras which mediate glucose-stimulated cyclic-AMP formation. Mating pheromone inhibits RAS-linked adenylyl cyclase activation and this is dependent upon the alpha-factor receptor (STE2) and its associated G-protein beta-subunit (STE4). We now show that this pheromone effect is independent of mating pathway signalling components "downstream" of STE4 but displays an absolute requirement for an additional G-protein alpha-subunit encoded by GPA2. alpha-mating factor effects also involve a specific suppression of normal RAS2 activity as the constitutively activated mutant RAS2vall9 as well as wild type. RAS1 are insensitive to inhibition. Interaction between GPA2, STE4-STE18, RAS2 and adenylyl cyclase in yeast could give important insight into signalling pathways controlling normal and oncogenic p21ras activity in man.  相似文献   

6.
The Saccharomyces cerevisiae gene YPT1 encodes a protein that exhibits significant homology to the mammalian ras proteins. Using gene disruption techniques, we have shown that the intact YPT1 gene is required for spore viability. Lethality caused by loss of YPT1 function, unlike that caused by loss of the yeast ras homologs RAS1 and RAS2 function, is not suppressed by the bcy1 mutation, suggesting that YPT1 does not act through the adenylate cyclase regulatory system. A cold-sensitive allele, ypt1-1, was constructed. At the nonpermissive temperature, mutants died, exhibiting aberrant nuclear morphology, as well as abnormal distribution of actin and tubulin. The mutant cells died without exhibiting classical cell-cycle-specific arrest; nevertheless, examination of cellular DNA content suggests that the YPT1 function is required, particularly after S phase. Cells carrying the ypt1-1 mutation died upon nitrogen starvation even at a temperature permissive for growth; diploid cells homozygous for ypt1-1 did not sporulate. The YPT1 gene is thus involved in nutritional regulation of the cell cycle as well as in normal progression through the mitotic cell cycle.  相似文献   

7.
Regulatory function of the Saccharomyces cerevisiae RAS C-terminus.   总被引:19,自引:11,他引:8       下载免费PDF全文
Activating mutations (valine 19 or leucine 68) were introduced into the Saccharomyces cerevisiae RAS1 and RAS2 genes. In addition, a deletion was introduced into the wild-type gene and into an activated RAS2 gene, removing the segment of the coding region for the unique C-terminal domain that lies between the N-terminal 174 residues and the penultimate 8-residue membrane attachment site. At low levels of expression, a dominant activated phenotype, characterized by low glycogen levels and poor sporulation efficiency, was observed for both full-length RAS1 and RAS2 variants having impaired GTP hydrolytic activity. Lethal CDC25 mutations were bypassed by the expression of mutant RAS1 or RAS2 proteins with activating amino acid substitutions, by expression of RAS2 proteins lacking the C-terminal domain, or by normal and oncogenic mammalian Harvey ras proteins. Biochemical measurements of adenylate cyclase in membrane preparations showed that the expression of RAS2 proteins lacking the C-terminal domain can restore adenylate cyclase activity to cdc25 membranes.  相似文献   

8.
Genetic analysis of yeast RAS1 and RAS2 genes   总被引:59,自引:0,他引:59  
We present a genetic analysis of RAS1 and RAS2 of S. cerevisiae, two genes that are highly homologous to mammalian ras genes. By constructing in vitro ras genes disrupted by selectable genes and introducing these by gene replacement into the respective ras loci, we have determined that neither RAS1 nor RAS2 are by themselves essential genes. However, ras1 - ras2 - spores of doubly heterozygous diploids are incapable of resuming vegetative growth. We have determined that RAS1 is located on chromosome XV, 7 cM from ade2 and 63 cM from his3; and RAS2 is located on chromosome XIV, 2 cM from met4 . We have also constructed by site-directed mutagenesis a missense mutant, RAS2val19 , which encodes valine in place of glycine at the nineteenth amino acid position, the same sort of missense mutation that is found in some transforming alleles of mammalian ras genes. Diploid yeast cells that contain this mutation are incapable of sporulating efficiently, even when they contain wild-type alleles.  相似文献   

9.
H. Mitsuzawa  I. Uno  T. Oshima    T. Ishikawa 《Genetics》1989,123(4):739-748
The yeast Saccharomyces cerevisiae contains two ras homologues, RAS1 and RAS2, whose products have been shown to modulate the activity of adenylate cyclase encoded by the CYR1 gene. To isolate temperature-sensitive mutations in the RAS2 gene, we constructed a plasmid carrying a RAS2 gene whose expression is under the control of the galactose-inducible GAL1 promoter. A ras1 strain transformed with this plasmid was subjected to ethyl methanesulfonate mutagenesis and nystatin enrichment. Screening of approximately 13,000 mutagenized colonies for galactose-dependent growth at a high temperature (37 degrees) yielded six temperature-sensitive ras2 (ras2ts) mutations and one temperature-sensitive cyr1 (cyr1ts) mutation that can be suppressed by overexpression or increased dosage of RAS2. Some ras2ts mutations were shown to be suppressed by an extra copy of CYR1. Therefore increased dosage of either RAS2 or CYR1 can suppress the temperature sensitivity caused by a mutation in the other. ras1 ras2ts and ras1 cyr1ts mutants arrested in the G1 phase of the cell cycle at the restrictive temperature, and showed pleiotropic phenotypes to varying degrees even at a temperature permissive for growth (25 degrees), including slow growth, sporulation on rich media, increased accumulation of glycogen, impaired growth on nonfermentable carbon sources, heat-shock resistance, impaired growth on low concentrations of glucose, and lithium sensitivity. Of these, impaired growth on low concentrations of glucose and sensitivity to lithium are new phenotypes, which have not been reported for mutants defective in the cAMP pathway.  相似文献   

10.
Previously described mutations in RAS genes that cause a dominant activated phenotype affect the intrinsic biochemical properties of RAS proteins, either decreasing the intrinsic GTPase or reducing the affinity for guanine nucleotides. In this report, we describe a novel activating mutation in the RAS2 gene of Saccharomyces cerevisiae that does not alter intrinsic biochemical properties of the mutant RAS2 protein. Rather, this mutation, RAS2-P41S (proline 41 to serine), which lies in the effector region of RAS, is shown to abolish the ability of the IRA2 protein to stimulate the GTPase activity of the mutant RAS protein. This mutation also modestly reduced the ability of the mutant protein to stimulate the target adenylate cyclase in an in vitro assay, although in vivo the phenotypes it induced suggest that it retains potency in stimulation of adenylate cyclase. Our results demonstrate that although the effector region of RAS appears to be important for interaction with both target effector and negative regulators of RAS, it is possible to eliminate negative regulator responsiveness and retain potency in effector stimulation.  相似文献   

11.
In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.  相似文献   

12.
The gene corresponding to the S. cerevisiae cell division cycle mutant cdc25 has been cloned and sequenced, revealing an open reading frame encoding a protein of 1589 amino acids that contains no significant homologies with other known proteins. Cells lacking CDC25 have low levels of cyclic AMP and decreased levels of Mg2+-dependent adenylate cyclase activity. The lethality resulting from disruption of the CDC25 gene can be suppressed by the presence of the activated RAS2val19 gene, but not by high copy plasmids expressing a normal RAS2 or RAS1 gene. These results suggest that normal RAS is dependent on CDC25 function. Furthermore, mutationally activated alleles of CDC25 are capable of inducing a set of phenotypes similar to those observed in strains containing a genetically activated RAS/adenylate cyclase pathway, suggesting that CDC25 encodes a regulatory protein. We propose that CDC25 regulates adenylate cyclase by regulating the guanine nucleotide bound to RAS proteins.  相似文献   

13.
A detailed kinetic analysis of the cell cycle of cdc25-1, RAS2Val-19, or cdc25-1/RAS2Val-19 mutants during exponential growth is presented. At the permissive temperature (24 degrees C), cdc25-1 cells show a longer G1/unbudded phase of the cell cycle and have a smaller critical cell size required for budding without changing the growth rate in comparison to an isogenic wild type. The RAS2Val-19 mutation efficiently suppresses the ts growth defect of the cdc25-1 mutant at 36 degrees C and the increase of G1 phase at 24 degrees C. Moreover, it causes a marked increase of the critical cell mass required to enter into a new cell division cycle compared with that of the wild type. Since the critical cell mass is physiologically modulated by nutritional conditions, we have also studied the behavior of these mutants in different media. The increase in cell size caused by the RAS2Val-19 mutation is evident in all tested growth conditions, while the effect of cdc25-1 is apparently more pronounced in rich culture media. CDC25 and RAS2 gene products have been showed to control cell growth by regulating the cyclic AMP metabolic pathway. Experimental evidence reported herein suggests that the modulation of the critical cell size by CDC25 and RAS2 may involve adenylate cyclase.  相似文献   

14.
Addition of glucose to Saccharomyces cerevisiae cells grown on a nonfermentable carbon source triggers a cyclic AMP (cAMP) signal, which induces a protein phosphorylation cascade. In a yeast strain lacking functional RAS1 and RAS2 genes and containing a bcy mutation to suppress the lethality of RAS deficiency, the cAMP signal was absent. Addition of dinitrophenol, which stimulates in vivo cAMP synthesis by lowering intracellular pH, also did not enhance the cAMP level. A bcy control strain, with functional RAS genes present, showed cAMP responses similar to those of a wild-type strain. In disruption mutants containing either a functional RAS1 gene or a functional RAS2 gene, the cAMP signal was not significantly different from the one in wild-type cells, indicating that RAS function cannot be a limiting factor for cAMP synthesis during induction of the signal. Compared with wild-type cells, the cAMP signal decreased in intensity with increasing temperature in a ras2 disruption mutant. When the mutant RAS2Val-19, which carries the equivalent of the human H-rasVal-12 oncogene, was grown under conditions in which RAS1 expression is repressed, the cAMP signal was absent. The oncogene product is known to be deficient in GTPase activity. However, the amino acid change at position 19 (or 12 in the corresponding human oncogene product) might also have other effects, such as abolishing receptor interaction. Such an additional effect probably provides a better explanation for the lack of signal transmission than the impaired GTPase activity. When the RAS2Val-19 mutant was grown under conditions in which RAS1 is expressed, the cAMP signal was present but significantly delayed compared with the signal in wild-type cells. This indicates that oncogenic RAS proteins inhibit normal functioning of wild-type RAS proteins in vivo and also that in spite of the presence of the RAS2(Val-19) oncogene, adenyl cyclase is not maximally stimulated in vivo. Expression of only the RAS(Val-19) gene product also prevented most of the stimulation of cAMP synthesis by dinitrophenol, indicating that lowered intracellular pH does not act directly on adenyl cyclase but on a step earlier in the activation pathway of the enzyme. The results obtained with the control bcy strain, the RAS2(Val-19) strain under conditions in which RAS1 is expressed, and with dinitrophenol show that the inability of the oncogene product to mediate the cAMP signal is not due to feedback inhibition by the high protein kinase activity in strains containing the RAS2(Val-19) oncogene. Hence, the present results show that the RAS protein in S. cerevisiae are involved in the transmission of the glucose-induced cAMP signal and that the oncogenic RAS protein is unable to act as a signal transducer. The RAS protein in S. cerevisiae apparently act similarly to the Gs proteins of mammalian adenyl cyclase, but instead of being involved in hormone signal transmission, they function in a nutrient-induced signal transmission pathway.  相似文献   

15.
In these experiments we demonstrate that purified RAS proteins, whether derived from the yeast RAS1 or RAS2 or the human H-ras genes, activate yeast adenylate cyclase in the presence of guanine nucleotides. These results confirm the prediction of earlier genetic and biochemical data and for the first time provide a complete biochemical assay for RAS protein function. Furthermore, we observe a biochemical difference between the RAS2 and RAS2val19 proteins in their ability to activate adenylate cyclase after preincubation with GTP.  相似文献   

16.
S Tanaka  S Hasegawa  F Hishinuma  S Kurata 《Cell》1989,57(4):675-681
The effects of beta-estradiol (estrogen; a minor component of yeast cells) on S. cerevisiae cells in the G0 and G1 phases were examined. Results showed that estrogen stimulated the recovery of growth from G0 arrest induced by nutrient limitation or ts mutation of cdc35 (adenylate cyclase) in the early G1 phase, and inhibited entry into the resting G0 phase by increasing the intracellular cAMP level. However, estrogen had no effect on late G1 arrest induced by the alpha factor or ts mutation of cdc36. Estrogen was found to lead to higher steady-state levels of adenylate cyclase mRNA but not to affect the expression of the RAS1 and RAS2 genes, although these can also alter the intracellular cAMP level. These results suggest that estrogen influences the cell cycle of yeast in the early G1 phase by controlling the level of cAMP through the increase of adenylate cyclase mRNA.  相似文献   

17.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, yeast RAS proteins are potent activators of adenylate cyclase. In the present work we measured the activity of adenylate cyclase in membranes from Saccharomyces cerevisiae which overexpress this enzyme. The response of the enzyme to added RAS2 proteins bound with various guanine nucleotides and their analogs suggests that RAS2 proteins are active in their GTP-bound form and are virtually inactive in their GDP-bound form. Also, active RAS2 protein is not inhibited by inactive RAS2, suggesting that the inactive form does not compete with the active form in binding to its effector.  相似文献   

19.
Newly isolated temperature-sensitive cdc35 mutants of Saccharomyces cerevisiae have been characterized. They show the morphology, growth and conjugation characteristics typical of class-A or class-II start mutants. The cdc35 mutation induces a significant decrease of the intracellular cAMP level and produces a thermolabile adenylate cyclase. By classical genetic criteria the CDC35 gene is identical with the structural gene of adenylate cyclase, CYR1. The results of the mutant selection, the kinetics of macromolecule accumulation and the cell-density change of cdc35 mutants at the restrictive temperature, indicate that CDC35 function may not be cell cycle-specific. A new mutation, cas1, was isolated and partially characterized. It mediates the suppression by external cAMP of the unlinked cdc35 mutation. It causes a slight increase of the intracellular cAMP level and has strong effects on the adenylate cyclase activities, especially on the Mg2+ dependent activity. The data suggest that the CAS1 protein is a controlling element of adenylated cyclase. The CAS1 locus is different from the RAS1 and RAS2 loci.  相似文献   

20.
Mammalian ras genes substitute for the yeast RAS gene, and their products activate adenylate cyclase in yeast cells, although the direct target protein of mammalian ras p21s remains to be identified. ras p21s undergo posttranslational processing, including prenylation, proteolysis, methylation, and palmitoylation, at their C-terminal regions. We have previously reported that the posttranslational processing of Ki-ras p21 is essential for its interaction with one of its GDP/GTP exchange proteins named smg GDS. In this investigation, we have studied whether the posttranslational processing of Ki- and Ha-ras p21s is critical for their stimulation of yeast adenylate cyclase in a cell-free system. We show that the posttranslationally fully processed Ki- and Ha-ras p21s activate yeast adenylate cyclase far more effectively than do the unprocessed proteins. The previous and present results suggest that the posttranslational processing of ras p21s is important for their interaction not only with smg GDS but also with the target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号