首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that central angiotensin II (ANG II) administration would activate splenic sympathetic nerve discharge (SND), which in turn would alter splenic cytokine gene expression. Experiments were completed in sinoaortic nerve-lesioned, urethane-chloralose-anesthetized, splenic nerve-intact (splenic-intact) and splenic nerve-lesioned (splenic-denervated) Sprague-Dawley rats. Splenic cytokine gene expression was determined using gene-array and real-time RT-PCR analyses. Splenic SND was significantly increased after intracerebroventricular administration of ANG II (150 ng/kg, 10 microl), but not artificial cerebrospinal fluid (aCSF). Splenic mRNA expression of IL-1beta, IL-6, IL-2, and IL-16 genes was increased in ANG II-treated splenic-intact rats compared with aCSF-treated splenic-intact rats. Splenic IL-1beta, IL-2, and IL-6 gene expression responses to ANG II were significantly reduced in splenic-denervated compared with splenic-intact rats. Splenic gene expression responses did not differ significantly in ANG II-treated splenic-denervated and aCSF-treated splenic-intact rats. Splenic blood flow responses to intracerebroventricular ANG II administration did not differ between splenic-intact and splenic-denervated rats. These results provide experimental support for the hypothesis that ANG II modulates the immune system through activation of splenic SND, suggesting a novel relation between ANG II, efferent sympathetic nerve outflow, and splenic cytokine gene expression.  相似文献   

2.
Hypothermia produced by acute cooling prominently alters sympathetic nerve outflow. Skin sympathoexcitatory responses to skin cooling are attenuated in aged compared with young subjects, suggesting that advancing age influences sympathetic nerve responsiveness to hypothermia. However, regulation of skin sympathetic nerve discharge (SND) is only one component of the complex sympathetic nerve response profile to hypothermia. Whether aging alters the responsiveness of sympathetic nerves innervating other targets during acute cooling is not known. In the present study, using multifiber recordings of splenic, renal, and adrenal sympathetic nerve activity, we tested the hypothesis that hypothermia-induced changes in visceral SND would be attenuated in middle-aged and aged compared with young Fischer 344 (F344) rats. Colonic temperature (Tc) was progressively reduced from 38 degrees C to 31 degrees C in young (3 to 6 mo), middle-aged (12 mo), and aged (24 mo) baroreceptor-innervated and sinoaortic-denervated (SAD), urethane-chloralose anesthetized, F344 rats. The following observations were made. 1) Progressive hypothermia significantly (P < 0.05) reduced splenic, renal, and adrenal SND in young baroreceptor-innervated F344 rats. 2) Reductions in splenic, renal, and adrenal SND to progressive hypothermia were less consistently observed and, when observed, were generally attenuated in baroreceptor-innervated middle-aged and aged compared with young F344 rats. 3) Differences in splenic, renal, and adrenal SND responses to reduced Tc were observed in SAD young, middle-aged, and aged F344 rats, suggesting that age-associated attenuations in SND responses to acute cooling are not the result of age-dependent modifications in arterial baroreflex regulation of SND. These findings demonstrate that advancing chronological age alters the regulation of visceral SND responses to progressive hypothermia, modifications that may contribute to the inability of aged individuals to adequately respond to acute bouts of hypothermia.  相似文献   

3.
Although interleukin-1beta (IL-1beta) administration produces nonuniform changes in the level of sympathetic nerve discharge (SND), the effect of IL-1beta on the frequency-domain relationships between discharges in different sympathetic nerves is not known. Autospectral and coherence analyses were used to determine the effect of IL-1beta and mild hypothermia (60 min after IL-1beta, colonic temperature from 38 degrees C to 36 degrees C) on the relationships between renal-interscapular brown adipose tissue (IBAT) and splenic-lumbar sympathetic nerve discharges in chloralose-anesthetized rats. The following observations were made. 1) IL-1beta did not alter renal-IBAT coherence values in the 0- to 2-Hz frequency band or at the cardiac frequency (CF). 2) Peak coherence values relating splenic-lumbar discharges at the CF were significantly increased after IL-1beta and during hypothermia. 3) Hypothermia after IL-1beta significantly reduced the coupling (0-2 Hz and CF) between renal-IBAT but not splenic-lumbar SND bursts. 4) Combining IL-1beta and mild hypothermia had a greater effect on renal-IBAT SND coherence values than did mild hypothermia alone. These data demonstrate functional plasticity in sympathetic neural circuits and suggest complex relationships between immune products and SND regulation.  相似文献   

4.
We investigated the contributions of forebrain, brain stem, and spinal neural circuits to interleukin (IL)-1beta-induced sympathetic nerve discharge (SND) responses in alpha-chloralose-anesthetized rats. Lumbar and splenic SND responses were determined in spinal cord-transected (first cervical vertebra, C1), midbrain-transected (superior colliculus), and sham-transected rats before and for 60 min after intravenous IL-1beta (285 ng/kg). The observations made were the following: 1) lumbar and splenic SND were significantly increased after IL-1beta in sham C1-transected rats but were unchanged after IL-1beta in C1-transected rats; 2) intrathecal administration of DL-homocysteic acid (10 ng) increased SND in C1-transected rats; 3) lumbar and splenic SND were significantly increased after IL-1beta in sham- but not midbrain-transected rats; and 4) midbrain transection did not alter the pattern of lumbar and splenic SND, demonstrating the integrity of brain stem sympathetic neural circuits after decerebration. These results demonstrate that an intact forebrain is required for mediating lumbar and splenic sympathoexcitatory responses to intravenous IL-1beta, thereby providing new information about the organization of neural circuits responsible for mediating sympathetic-immune interactions.  相似文献   

5.
In the present study, we investigated the contributions of forebrain, brain stem, and spinal neural circuits to heating-induced sympathetic nerve discharge (SND) responses in chloralose-anesthetized rats. Frequency characteristics of renal and splenic SND bursts and the level of activity in these nerves were determined in midbrain-transected (superior colliculus), spinal cord-transected [first cervical vertebra (C1)], and sham-transected (midbrain and spinal cord) rats during progressive increases in colonic temperature (T(c)) from 38 to 41.6-41.7 degrees C. The following observations were made. 1) Significant increases in renal and splenic SND were observed during hyperthermia in midbrain-transected, sham midbrain-transected, C1-transected, and sham C1-transected rats. 2) Heating changed the discharge pattern of renal and splenic SND bursts and was associated with prominent coupling between renal-splenic discharge bursts in midbrain-transected, sham midbrain-transected, and sham C1-transected rats. 3) The pattern of renal and splenic SND bursts remained unchanged from posttransection recovery levels during heating in C1-transected rats. We conclude that an intact forebrain is not required for the full expression of SND responses to increased T(c) and that spinal neural systems, in the absence of supraspinal circuits, are unable to markedly alter the frequency characteristics of SND in response to acute heat stress.  相似文献   

6.
Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA.  相似文献   

7.
Bacillus anthracis infection is a pathophysiological condition that is complicated by progressive decreases in mean arterial pressure (MAP). Lethal toxin (LeTx) is central to the pathogenesis of B. anthracis infection, and the sympathetic nervous system plays a critical role in physiological regulation of acute stressors. However, the effect of LeTx on sympathetic nerve discharge (SND), a critical link between central sympathetic neural circuits and MAP regulation, remains unknown. We determined visceral (renal, splenic, and adrenal) SND responses to continuous infusion of LeTx [lethal factor (100 μg/kg) + protective antigen (200 μg/kg) infused at 0.5 ml/h for ≤6 h] and vehicle (infused at 0.5 ml/h) in anesthetized, baroreceptor-intact and baroreceptor (sinoaortic)-denervated (SAD) Sprague-Dawley rats. LeTx infusions produced an initial state of cardiovascular and sympathetic nervous system activation in intact and SAD rats. Subsequent to peak LeTx-induced increases in arterial blood pressure, intact rats demonstrated a marked hypotension that was accompanied by significant reductions in SND (renal and splenic) and heart rate (HR) from peak levels. After peak LeTx-induced pressor and sympathoexcitatory responses in SAD rats, MAP, SND (renal, splenic, and adrenal), and HR were progressively and significantly reduced, supporting the hypothesis that LeTx alters the central regulation of sympathetic nerve outflow. These findings demonstrate that the regulation of visceral SND is altered in a complex manner during continuous anthrax LeTx infusions and suggest that sympathetic nervous system dysregulation may contribute to the marked hypotension accompanying B. anthracis infection.  相似文献   

8.
Frequency-domain analyses were used to determine the effect of cold stress on the relationships between the discharge bursts of sympathetic nerve pairs, sympathetic and aortic depressor nerve pairs, and sympathetic and phrenic nerve pairs in chloralose-anesthetized, baroreceptor-innervated rats. Sympathetic nerve discharge (SND) was recorded from the renal, lumbar, splanchnic, and adrenal nerves during decreases in core body temperature from 38 to 30 degrees C. The following observations were made. 1) Hypothermia produced nonuniform changes in the level of activity in regionally selective sympathetic nerves. Specifically, cold stress increased lumbar and decreased renal SND but did not significantly change the level of activity in splanchnic and adrenal nerves. 2) The cardiac-related pattern of renal, lumbar, and splanchnic SND bursts was transformed to a low-frequency (0-2 Hz) pattern during cooling, despite the presence of pulse-synchronous activity in arterial baroreceptor afferents. 3) Peak coherence values relating the discharges between sympathetic nerve pairs decreased at the cardiac frequency but were unchanged at low frequencies (0-2 Hz), indicating that the sources of low-frequency SND bursts remain prominently coupled during progressive reductions in core body temperature. 4) Coherence of discharge bursts in phrenic and renal sympathetic nerve pairs in the 0- to 2-Hz frequency band increased during mild hypothermia (36 degrees C) but decreased during deep hypothermia (30 degrees C). We conclude that hypothermia profoundly alters the organization of neural circuits involved in regulation of sympathetic nerve outflow to selected regional circulations.  相似文献   

9.
Heart failure (HF) alters the regulation of basal sympathetic nerve discharge (SND); however, the effect of HF on SND responses to acute stress is not well established. In the present study, renal SND responses to hyperthermia were determined in chloralose-anesthetized HF rats and in sham controls. Whole body heating (colonic temperature increased from 38 to 41 degrees C) was used as an acute stressor because increased internal body temperature provides a potent stimulus to the sympathetic nervous system. Left ventricular end-diastolic pressure and the right ventricular wt-to-body wt ratio were increased (P < 0.05) in HF compared with sham rats. The following observations were made: 1) renal sympathoexcitatory responses to heating were significantly reduced in HF compared with sham rats, 2) renal blood flow remained unchanged from control levels during heating in HF rats but was significantly reduced in sham rats, and 3) renal SND responses to heating were significantly higher in HF rats with bilateral lesions of the hypothalamic paraventricular nucleus (PVN) compared with sham PVN-lesioned HF rats. These results demonstrate a marked attenuation in the responsiveness of renal SND to heating in HF rats and suggest that HF alters the organization of neural pathways mediating SND responses to heating.  相似文献   

10.
We tested the hypothesis that intracerebroventricular (lateral ventricle) administration of interleukin-1beta (IL-1beta) antibody increases the level of sympathetic nerve discharge (SND) in alpha-chloralose-anesthetized rats. Mean arterial pressure (MAP), heart rate (HR), and SND (splenic and renal) were recorded before (Preinfusion), during (25 min), and for 45 min after infusion of IL-1beta antibody (15 microg, 50 microl icv) in baroreceptor-intact (intact) and sinoaortic-denervated (SAD) rats. The following observations were made. First, intracerebroventricular infusion of IL-1beta antibody (but not saline and IgG) significantly increased MAP and the pressor response was higher in SAD compared with intact rats. Second, renal and splenic SND were significantly increased during and after intracerebroventricular IL-1beta antibody infusion and sympathoexcitatory responses were higher in SAD compared with intact rats. Third, intracerebroventricular administration of a single dose of IL-1beta antibody (15 microg, 5 microl for 2 min) significantly increased splenic and renal SND in intact rats. These results suggest that under the conditions of the present experiments central neural IL-1beta plays a role in the tonic regulation of SND and arterial blood pressure.  相似文献   

11.

Introduction

The aims of these studies were to identify the cytokine and chemokine expression profile of nucleus pulposus (NP) cells and to determine the relationships between NP cell cytokine and chemokine production and the characteristic tissue changes seen during intervertebral disc (IVD) degeneration.

Methods

Real-time q-PCR cDNA Low Density Array (LDA) was used to investigate the expression of 91 cytokine and chemokine associated genes in NP cells from degenerate human IVDs. Further real-time q-PCR was used to investigate 30 selected cytokine and chemokine associated genes in NP cells from non-degenerate and degenerate IVDs and those from IVDs with immune cell infiltrates (‘infiltrated’). Immunohistochemistry (IHC) was performed for four selected cytokines and chemokines to confirm and localize protein expression in human NP tissue samples.

Results

LDA identified the expression of numerous cytokine and chemokine associated genes including 15 novel cytokines and chemokines. Further q-PCR gene expression studies identified differential expression patterns in NP cells derived from non-degenerate, degenerate and infiltrated IVDs. IHC confirmed NP cells as a source of IL-16, CCL2, CCL7 and CXCL8 and that protein expression of CCL2, CCL7 and CXCL8 increases concordant with histological degenerative tissue changes.

Conclusions

Our data indicates that NP cells are a source of cytokines and chemokines within the IVD and that these expression patterns are altered in IVD pathology. These findings may be important for the correct assessment of the ‘degenerate niche’ prior to autologous or allogeneic cell transplantation for biological therapy of the degenerate IVD.  相似文献   

12.
Renal and splanchnic sympathetic nerve discharge (SND) responses to increased (38-41 degrees C) internal temperature were determined in anesthetized young (3-6 mo old), mature (12 mo old), and senescent (24 mo old) Fischer 344 (F344) rats. We hypothesized that SND responses would be altered in senescent and mature rats as demonstrated by attenuated sympathoexcitatory responses to heating and by the absence of hyperthermia-induced SND pattern changes. The following observations were made. 1) Renal and splanchnic SND responses were significantly increased during heating in young and mature but not in senescent rats. 2) At 41 degrees C, renal and splanchnic SND responses were higher in young compared with senescent rats, and renal SND was higher in mature than in senescent rats. 3) Heating changed the SND bursting pattern in young, but not in mature or senescent, rats. 4) SND responses to heating did not differ between baroreceptor-innervated (BRI) and sinoaortic-denervated (SAD) senescent rats but were higher in SAD compared with BRI young rats. These results demonstrate an attenuated responsiveness of sympathetic neural circuits to heating in senescent F344 rats.  相似文献   

13.
The migration, survival and proliferation of cells is the basis for all physiologic and pathologic processes in the human body. All these reactions are regulated by a complex chemokine network that guides lymphocytes homing, chemotaxis, adhesion and interplay between immunologic system response cells. Chemokines are also responsible for metastatic dissemination of cancers, including Hodgkin's and non-Hodgkin's lymphomas. The purpose of this study was to determine chemokine gene expression (CXCL8, CXCL10, CCL2, CCL3, CCL4 and CCL5) in lymphoma lymph nodes compared to their expression in reactive lymph nodes. We also analyzed the influence of chemokine gene expression on the survival of lymphoma patients. Chemokine gene expression was evaluated in 37 lymphoma lymph nodes and in 25 samples of reactive lymph nodes. Gene expression of chemokines CXCL8, CXCL10, CCL2, CCL3, CCL4 and CCL5 was measured using the PCR method. Statistical analysis was performed using CSS Statistica for Windows (version 7.0) software. Probability values 〈 〈 0.05 were considered statistically significant and those between 0.05 and 0.1 as indicative of a trend. We found lower CXCL8 and CXCL10 gene expression in lymphoma lymph nodes compared to reactive lymph nodes. In the cases of CCL2 and CCL3, expression in lymphomas was higher than in reactive lymph nodes. Patients with high expression of CCL2 and CXCL10 had shorter survival.  相似文献   

14.
IL-1 is a potent pro-inflammatory cytokine that activates intracellular signaling cascades some of which may involve IL-1 receptor associated kinase-1 (IRAK1). Psoriasis is a T cell dependent chronic inflammatory condition of the skin of unknown cause. IL-1 has been implicated in psoriasis pathology, but the mechanism has not been elucidated. Interestingly, expression of IRAK1 is elevated in psoriatic skin. To identify a potential link between IL-1, keratinocytes and T cells in skin inflammation we employed pathway-focused microarrays to evaluate IL-1 dependent gene expression in keratinocytes. Several candidate mRNAs encoding known T cell chemoattractants were identified in primary keratinocytes and the stable keratinocyte cell line HaCaT. CCL5 and CCL20 mRNA and protein levels were confirmed up-regulated by IL-1 in concentration and time-dependent manners. Furthermore IL-1 synergized with IFN-γ and TNF-α. Expression of CXCL9, CXCL10 and CXCL11 mRNAs was also increased in response to IL-1, but protein could only be detected in medium from cells treated with IFN-γ alone or in combination with IL-1. Over-expression of IRAK1 led to increased constitutive and cytokine induced production of CCL5 and CCL20. Inhibition of IRAK1 activity through RNAi or expression of a dominant negative mutant blocked production of CCL5 and CCL20 but had no effect upon the IL-1 enhancement of IFN-γ induced CXCL9, CXCL10 and CXCL11 production. In conclusion IL-1 regulates T cell targeting chemokine production in keratinocytes through IRAK1 dependent and independent pathways. These pathways may contribute to acute and chronic skin inflammation.  相似文献   

15.
Recent studies indicate that TLRs are critical in generating innate immune responses during infection with HSV-1. In this study, we investigated the role of TLR2 signaling in regulating the production of neuroimmune mediators by examining cytokine and chemokine expression using primary microglial cells obtained from TLR2-/- as well as wild-type mice. Data presented here demonstrate that TLR2 signaling is required for the production of proinflammatory cytokines and chemokines: TNF-alpha, IL-1beta, IL-6, IL-12, CCL7, CCL8, CCL9, CXCL1, CXCL2, CXCL4, and CXCL5. CXCL9 and CXCL10 were also induced by HSV, but their production was not dependent upon TLR2 signaling. Because TLR2-/- mice display significantly reduced mortality and diminished neuroinflammation in response to brain infection with HSV, the TLR2-dependent cytokines identified here might function as key players influencing viral neuropathogenesis.  相似文献   

16.
17.
18.
Feuser K  Thon KP  Bischoff SC  Lorentz A 《Cytokine》2012,58(2):178-185
Mast cells are key effector cells of immediate type allergic reactions. Upon activation they release a broad array of pre-stored and de novo synthesized mediators including immunoregulatory cytokines and chemokines. Here, we analyzed the chemokine profile expressed by mature human mast cells. Human mast cells were isolated from intestinal tissue and cultured with stem cell factor (SCF) in the presence or absence of IL-4 for 10d. Cells were stimulated by cross-linking of the high affinity IgE receptor (FcεRI) and/or by SCF. Chemokine and chemokine receptor mRNA expression was determined by real-time RT-PCR and chemokine release was measured by multiplex bead immunoassay. Out of 43 chemokines and 19 chemokine receptors human intestinal mast cells express 27 chemokines and nine chemokine receptors. Twelve chemokines (CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL18, CCL20, CXCL2, CXCL3, CXCL8, and XCL1) were more than four-fold up-regulated in response to FcεRI cross-linking. Combination of pre-culture with IL-4 and/or stimulation with SCF in addition to FcεRI cross-linking further increased the antigen-dependent expression of mRNA for most chemokines. In contrast, the expression of CCL20, CXCL2, and CXCL3 was strongly inhibited by IL-4 treatment. In conclusion, human intestinal mast cells express a broad spectrum of different chemokines underlining their important role as immunoregulatory cells. Furthermore, combined treatment with IL-4 and SCF increases the antigen-mediated expression and release of multiple chemokines, but IL-4 priming inhibits the expression of CCL20, CXCL2, and CXCL3.  相似文献   

19.
Certain chemokines possess anti-angiogenic and antibacterial activity, in addition to their ability to recruit leukocytes. Herein, we demonstrate that CXCL9/MIG induces the expression, by a monocytic cell line and peripheral blood mononuclear cells, of a variety of chemokines including CXCL8/IL-8, CCL3/MIP-1α, CCL4/MIP-1β, CCL2/MCP-1 in a pertussis toxin insensitive manner. Similarly, another cationic chemokine CCL20/MIP-3α, but not the non-cationic chemokines CCL2 or CCL3, stimulated monocytic cells to produce substantial amounts of CXCL8 and CCL3. Microarray experiments demonstrated that CXCL9, but not CCL2, induced the expression of hundreds of genes, many of which have known or proposed immunomodulatory functions. Induction of CXCL8 required the p38 and ERK1/2 mitogen-activated protein kinases but not NFκB, JAK-STAT or JNK signaling pathways. These results collectively demonstrate that CXCL9 has immunomodulatory functions that are not mediated through a G-protein coupled receptor and may possess additional roles in host defenses against infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号