首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hexosamines serve a nutrient-sensing function through enzymatic O-glycosylation of proteins. We previously characterized transgenic (Tg) mice with overexpression of the rate-limiting enzyme in hexosamine production, glutamine:fructose-6-phosphate amidotransferase, in beta-cells. Animals were hyperinsulinemic, resulting in peripheral insulin resistance. Glucose tolerance deteriorated with age, and males developed diabetes. We therefore examined islet function in these mice by perifusion in vitro. Young (2-mo-old) Tg animals had enhanced sensitivity to glucose of insulin secretion. Insulin secretion was maximal at 20 mM and half maximal at 9.9 +/- 0.5 mM glucose in Tg islets compared with maximal at 30 mM and half maximal at 13.5 +/- 0.7 mM glucose in wild type (WT; P < 0.005). Young Tg animals secreted more insulin in response to 20 mM glucose (Tg, 1,254 +/- 311; WT, 425 +/- 231 pg x islet(-1) x 35 min(-1); P < 0.01). Islets from older (8-mo-old) Tg mice became desensitized to glucose, with half-maximal secretion at 16.1 +/- 0.8 mM glucose, compared with 11.8 +/- 0.7 mM in WT (P < 0.05). Older Tg mice secreted less insulin in response to 20 mM glucose (Tg, 2,256 +/- 342; WT, 3,493 +/- 367 pg x islet(-1) x 35 min(-1); P < 0.05). Secretion in response to carbachol was similar in WT and Tg at both ages. Glucose oxidation was blunted in older Tg islets. At 5 mM glucose, islet CO2 production was comparable between Tg and WT. However, WT mice increased islet CO2 production 2.7 +/- 0.4-fold in 20 mM glucose, compared with only 1.4 +/- 0.1-fold in Tg (P < 0.02). Results demonstrate that hexosamines are involved in nutrient sensing for insulin secretion, acting at least in part by modulating glucose oxidation pathways. Prolonged excess hexosamine flux results in glucose desensitization and mimics glucose toxicity.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) plays a significant role in glucose homeostasis through its incretin effect on insulin secretion. However, GLP-1 also exhibits extrapancreatic actions, and in particular its possible influences on insulin sensitivity are controversial. To study the dynamic action of GLP-1 on insulin sensitivity, we applied advanced statistical modeling methods to study glucose disappearance in mice that underwent intravenous glucose tolerance test with administration of GLP-1 at various dose levels. In particular, the minimal model of glucose disappearance was exploited within a population estimation framework for accurate detection of relationships between glucose disappearance parameters and GLP-1. Minimal model parameters were estimated from glucose and insulin data collected in 209 anesthetized normal mice after intravenous injection of glucose (1 g/kg) alone or with GLP-1 (0.03-100 nmol/kg). Insulin secretion markedly increased, as expected, with increasing GLP-1 dose. However, minimal model-derived indexes, i.e., insulin sensitivity and glucose effectiveness, did not significantly change with GLP-1 dose. Instead, fractional turnover rate of insulin action [P2 = 0.0207 +/- 24.3% (min) at zero GLP-1 dose] increased steadily with administered GLP-1 dose, with significant differences at 10.4 nmol/kg (P2 = 0.040 +/- 15.5%, P = 0.0046) and 31.2 nmol/kg (P2 = 0.050 +/- 29.2%, P = 0.01). These results show that GLP-1 influences the dynamics of insulin action by accelerating insulin action following glucose challenge. This is a novel mechanism contributing to the glucose-lowering action of GLP-1.  相似文献   

3.
Zinc improves both insulin secretion and insulin sensitivity, and exerts insulin-like effects. We investigated its acute effects on the parameters of glucose assimilation determined with the minimal model technique from frequent sampling intravenous glucose tolerance test (FSIVGTT) in seven healthy volunteers. FSIVGTTs (0.5 g/kg of glucose, followed by 2 U insulin iv injection at 19 min) were performed after the subjects had taken 20 mg zinc gluconate twice (the evening before and 30 min before the beginning of the test) or placebo pills (simple blind randomized protocol). Glucose assimilation was analyzed by calculating Kg (slope of the exponential decrease in glycemia), glucose effectiveness Sg (i.e., ability of glucose itself to increase its own disposal independent of insulin response), and SI (insulin sensitivity, i.e. the effect of increases in insulinemia on glucose disposal). The two latter parameters were calculated by fitting the experimental data with the two equations of Bergman’s “minimal model”. Zinc increased Kg (p<0.05) and Sg (p<0.05), whereas SI and insulin first-phase secretion did not significantly increase. This study suggests that zinc improves glucose assimilation, as evidenced by the increase in Kg, and that this improvement results mainly from an increase in glucose effectiveness (insulin-like effect), rather than an action on insulin response or insulin sensitivity.  相似文献   

4.
A fatty liver is associated with fasting hyperinsulinemia, which could reflect either impaired insulin clearance or hepatic insulin action. We determined the effect of liver fat on insulin clearance and hepatic insulin sensitivity in 80 nondiabetic subjects [age 43 +/- 1 yr, body mass index (BMI) 26.3 +/- 0.5 kg/m(2)]. Insulin clearance and hepatic insulin resistance were measured by the euglycemic hyperinsulinemic (insulin infusion rate 0.3 mU.kg(-1).min(-1) for 240 min) clamp technique combined with the infusion of [3-(3)H]glucose and liver fat by proton magnetic resonance spectroscopy. During hyperinsulinemia, both serum insulin concentrations and increments above basal remained approximately 40% higher (P < 0.0001) in the high (15.0 +/- 1.5%) compared with the low (1.8 +/- 0.2%) liver fat group, independent of age, sex, and BMI. Insulin clearance (ml.kg fat free mass(-1).min(-1)) was inversely related to liver fat content (r = -0.52, P < 0.0001), independent of age, sex, and BMI (r = -0.37, P = 0.001). The variation in insulin clearance due to that in liver fat (range 0-41%) explained on the average 27% of the variation in fasting serum (fS)-insulin concentrations. The contribution of impaired insulin clearance to fS-insulin concentrations increased as a function of liver fat. This implies that indirect indexes of insulin sensitivity, such as homeostatic model assessment, overestimate insulin resistance in subjects with high liver fat content. Liver fat content correlated significantly with fS-insulin concentrations adjusted for insulin clearance (r = 0.43, P < 0.0001) and with directly measured hepatic insulin sensitivity (r = -0.40, P = 0.0002). We conclude that increased liver fat is associated with both impaired insulin clearance and hepatic insulin resistance. Hepatic insulin sensitivity associates with liver fat content, independent of insulin clearance.  相似文献   

5.
Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mice were treated with the LXR agonist GW-3965 for 10 days. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp studies. Hepatic glucose production (HGP) and metabolic clearance rate (MCR) of glucose were determined with stable isotope techniques. Blood glucose and hepatic and whole body insulin sensitivity remained unaffected upon treatment in lean mice, despite increased hepatic triglyceride contents (61.7 +/- 7.2 vs. 12.1 +/- 2.0 nmol/mg liver, P < 0.05). In ob/ob mice, LXR activation resulted in lower blood glucose levels and significantly improved whole body insulin sensitivity. GW-3965 treatment did not affect HGP under normo- and hyperinsulinemic conditions, despite increased hepatic triglyceride contents (221 +/- 13 vs. 176 +/- 19 nmol/mg liver, P < 0.05). Clamped MCR increased upon GW-3965 treatment (18.2 +/- 1.0 vs. 14.3 +/- 1.4 ml x kg(-1) x min(-1), P = 0.05). LXR activation increased white adipose tissue mRNA levels of Glut4, Acc1 and Fasin ob/ob mice only. In conclusion, LXR-induced blood glucose lowering in ob/ob mice was attributable to increased peripheral glucose uptake and metabolism, physiologically reflected in a slightly improved insulin sensitivity. Remarkably, steatosis associated with LXR activation did not affect hepatic insulin sensitivity.  相似文献   

6.
This study aimed to evaluate a simplified minimal model protocol for measuring insulin sensitivity in mild and severe type 2 diabetes, considering that changes in serum insulin during an insulin-modified intravenous glucose tolerance test almost only reflect the insulin injection. Two groups of diabetics treated with high doses of antidiabetic agents were recruited. Mean insulin responses were calculated in group 1 (n = 30). In group 2 (n = 38), we compared insulin sensitivity (SI) obtained with reference protocol with SI calculated by a minimal model procedure including the theoretical average insulin profile determined in group 1, and with Homeostasis Model Assessment (HOMA-R). Additionally, the cost of each procedure was calculated. SI measured by the reference method strongly correlated with SI determined by the simplified protocol (r = 0.966, p < 0.0001), while no correlation was found with HOMA-R (r = - 0.349, NS). Reduction of cost for HOMA-R and simplified minimal model procedure were - 92 and - 81 %, respectively. This simplified and relative inexpensive protocol, using minimal model procedure without insulin measurement, accurately measures SI regardless of beta-cell defect degree. This approach could be of interest when limits of validity of simple indexes are reached.  相似文献   

7.
8.
Excessive metabolism of glucose and/or fatty acids may impair insulin signaling by increasing oxidative stress. The objective of this study was to examine the association between insulin sensitivity and protein carbonyls, a systemic marker of oxidative stress, in healthy, nondiabetic women, and to determine if the relationship differed with race. Subjects were 25 African-Americans (AA, BMI 28.4 ± 6.2 kg/m(2), range 18.8-42.6 kg/m(2); age 33.1 ± 13.5 years, range 18-58 years) and 28 European-Americans (EA, BMI 26.2 ± 5.9 kg/m(2), range 18.7-48.4 kg/m(2); age 31.6 ± 12.4 years, range 19-58 years). Insulin sensitivity was determined using an intravenous glucose tolerance test incorporating [6,6-(2)H(2)]-glucose, and a two-compartment mathematical model. Multiple linear regression results indicated that insulin sensitivity was inversely associated with protein carbonyls in AA (standardized regression coefficient -0.47, P < 0.05) but not EA (0.01, P = 0.945), after adjusting for %body fat. In contrast, %body fat was significantly and positively associated with insulin sensitivity in EA (-0.54, P < 0.01) but not AA (-0.24, P = 0.196). Protein carbonyls were associated with free fatty acids (FFA) in AA (r = 0.58, P < 0.01) but not EA (r = -0.11, P = 0.59). When subjects were divided based on median levels of fasting glucose and FFA, those with higher glucose/FFA concentrations had a significantly greater concentration of circulating protein carbonyls compared to those with lower glucose/FFA concentrations (P < 0.05). These results suggest that oxidative stress independently contributes to insulin sensitivity among AA women. Further, this association in AA may be mediated by circulating FFA and/or glucose.  相似文献   

9.
10.
11.
Oral application of 50 mg Etomoxir caused a significant rise (33.1%) of insulin-mediated glucose uptake. This was shown in a placebo-controlled, double-blind randomized study in 8 type 2 diabetic patients by using the euglycemic clamp technique. The mean metabolic clearance rate of glucose (MCR) was raised from 4.1 +/- 0.9 mg/(kg.min) to 5.4 +/- 1.2 mg/(kg.min) (x +/- SEM, P = 0.039). Plasma levels of free fatty acids (FFA), glucose counterregulatory hormones, lipids and C-peptide values during the clamps were not different after verum and placebo. We conclude that Etomoxir improves insulin sensitivity in type 2 diabetic patients.  相似文献   

12.
alpha2-HS glycoprotein (AHSG), also known as fetuin-A, inhibits insulin receptor autophosphorylation and tyrosine kinase activity in vitro and in vivo. Earlier we have shown that fetuin-null (KO) mice demonstrate improved insulin sensitivity and resistance to diet-induced obesity. Since aging is associated with insulin resistance and impaired glucose handling, we tested the hypothesis that fetuin-null (KO) mice are resilient to changes in insulin sensitivity associated with aging. Aged (80-week-old) fetuin-null mice were leaner and demonstrated significantly lower body weights compared to age- and sex-matched wild-type (WT) littermates. Leanness in aged fetuin KO mice was accompanied by a significant increase in dark-onset energy expenditure, without marked alteration of respiratory quotient. In comparison to WT mice, fetuin KO mice demonstrated a lower fasting insulin resistance index, and significantly lower blood glucose and insulin levels, following a 4h fast. Interestingly, despite significantly decreased insulin levels during a glucose tolerance test, aged fetuin-null mice demonstrated a similar glucose excursion as WT mice, indicative of improved insulin sensitivity. Analysis of aldehyde-fuchsin stained pancreas from aged fetuin KO mice indicated no difference in islet beta-cell size or number. An insulin tolerance test confirmed the increased insulin sensitivity of aged fetuin KO mice. Further, compared to WT mice, aged fetuin-null mice demonstrated increased skeletal muscle and liver IR autophosphorylation and TK activity. Taken together, this study suggests that the absence of fetuin may contribute to the improvement of insulin sensitivity associated with aging.  相似文献   

13.
The aim of the present study was to determine the effects of feeding various dietary proteins on insulin sensitivity and glucose tolerance in rats. Male Wistar rats were fed for 28 days with isoenergetic diets containing either casein, soy protein, or cod protein. Cod protein-fed and soy protein-fed rats had lower fasting plasma glucose and insulin concentrations compared with casein-fed animals. After intravenous glucose bolus, cod protein- and soy protein-fed rats induced lower incremental areas under glucose curves compared with casein-fed animals. Improved peripheral insulin sensitivity was confirmed by higher glucose disposal rates in cod protein- and soy protein-fed rats (15.2 +/- 0.3 and 13.9 +/- 0.6 mg. kg(-1). min(-1), respectively) compared with casein-fed animals (6.5 +/- 0.7 mg. kg(-1). min(-1), P < 0.05). Moreover, test meal experiments revealed that, in the postprandial state, the lower plasma insulin concentrations in cod protein- and soy protein-fed animals could be also due to decreased pancreatic insulin release and increased hepatic insulin removal. In conclusion, the metabolic responses to three common dietary proteins indicate that cod and soy proteins, when compared with casein, improve fasting glucose tolerance and peripheral insulin sensitivity in rats.  相似文献   

14.
15.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

16.
AIM: To examine whether reduced insulin secretory capacity or increased insulin secretory demand is associated with elevated ratio of plasma proinsulin to immunoreactive insulin (PI/IRI ratio) in non-diabetic subjects. SUBJECTS AND METHODS: We measured various indices of insulin secretory function and insulin sensitivity by frequently sampled intravenous glucose tolerance test (FSIGT) and hyerglycemic glucose clamp in 21 healthy young men. We then examined the relationships between these indices and PI, IRI, or PI/IRI ratio in the fasting state. RESULTS: Insulin sensitivity index (SI) measured by FSIGT correlated inversely with basal IRI (r=-0.53, P < 0.01) and PI levels (r=-0.57, P < 0.01), but there was no significant correlation between SI and PI/IRI ratio (r=0.26, NS). On the other hand, PI/IRI ratio correlated inversely with insulin secretory indices, such as acute insulin responses during FSIGT (r =-0.46, P < 0.01) and hyperglycemic glucose clamp (r=-0.54, P < 0.01) and submaximum insulin response during hyperglycemic glucose clamp (r=-0.59, P < 0.01). CONCLUSIONS: These results indicate that elevated PI/IRI ratio may serve as a marker of reduced insulin secretory function in non-diabetic subjects.  相似文献   

17.
18.
Measuring insulin sensitivity during the physiological milieu of oral glucose perturbation, e.g., a meal or an oral glucose tolerance test, would be extremely valuable but difficult since the rate of appearance of absorbed glucose is unknown. The reference method is a tracer two-step one: first, the rate of appearance of glucose (R(a meal)(ref)) is reconstructed by employing the tracer-to-tracee ratio clamp technique with two tracers and a model of non-steady-state glucose kinetics; next, this R(a meal)(ref) is used as the known input of a model describing insulin action on glucose kinetics to estimate insulin sensitivity (SI(ref)). Recently, a nontracer method based on the oral minimal model (OMM) has been proposed to estimate simultaneously the above quantities, denoted R(a meal) and SI, respectively, from plasma glucose and insulin concentrations measured after an oral glucose perturbation. This last method has obvious advantages over the tracer method, but its domain of validity has never been assessed against a reference method. It is thus important to establish whether or not the "nontracer" R(a meal) and SI compare well with the "tracer" R(a meal)(ref) and SI(ref). We do this comparison on a database of 88 subjects, and it is very satisfactory: R(a meal) profiles agree well with the R(a meal)(ref) and correlation of SI(ref) with SI is r = 0.86 (P < 0.0001). We conclude that OMM candidates as a reliable tool to measure both the rate of glucose absorption and insulin sensitivity from oral glucose tests without employing tracers.  相似文献   

19.
Apelin is the endogenous ligand of the G-protein coupled apj receptor. Apelin is expressed in the brain, the hypothalamus and the stomach and was recently shown also to be an adipokine secreted from the adipocytes. Although apelin has been suggested to be involved in the regulation of food intake, it is not known whether the peptide affects islet function and glucose homeostasis. We show here that the apj receptor is expressed in pancreatic islets and that intravenous administration of full-length apelin-36 (2 nmol/kg) inhibits the rapid insulin response to intravenous glucose (1 g/kg) by 35% in C57BL/6J mice. Thus, the acute (1-5 min) insulin response to intravenous glucose was 682+/-23 pmol/l after glucose alone (n=17) and 445+/-58 pmol/l after glucose plus apelin-36 (n=18; P=0.017). This was associated with impaired glucose elimination (the 5-20 min glucose elimination was 2.9+/-0.1%/min after glucose alone versus 2.3+/-0.2%/min after glucose plus apelin-36, P=0.008). Apelin (2 nmol/kg) also inhibited the insulin response to intravenous glucose in obese insulin resistant high-fat fed C57BL/6J mice (P=0.041). After 60 min incubation of isolated islets from normal mice, insulin secretion in the presence of 16.7 mmol/l glucose was inhibited by apelin-36 at 1 mumol/l, whereas apelin-36 did not significantly affect insulin secretion at 2.8 or 8.3 mmol/l glucose or after stimulation of insulin secretion by KCl. Islet glucose oxidation at 16.7 mmol/l was not affected by apelin-36. We conclude that the apj receptor is expressed in pancreatic islets and that apelin-36 inhibits glucose-stimulated insulin secretion both in vivo and in vitro. This may suggest that the islet beta-cells are targets for apelin-36.  相似文献   

20.
Plasma glucose, insulin, and C-peptide concentrations were determined in response to graded infusions of glucose, and insulin secretion rates were calculated over each sampling period. Measurements were also made of insulin clearance, resistance to insulin-mediated glucose, uptake, and the plasma glucose, insulin, and C-peptide concentrations at hourly intervals from 8:00 AM to 4:00 PM in response to breakfast and lunch. Plasma glucose, insulin, and C-peptide concentrations were significantly (P < 0.01) higher in obese women in response to the graded intravenous glucose infusion, associated with a 40% (P < 0.005) greater insulin secretory response. Degree of insulin resistance correlated positively (P < 0.05) with the increase in insulin secretion rate in both nonobese (r = 0.52) and obese (r = 0.58) groups and inversely (P < 0.05) with the decrease in insulin clearance in obese (r = -0.46) and nonobese (r = -0.39) individuals. Weight loss was associated with significantly lower plasma glucose, insulin, and C-peptide concentrations in response to graded glucose infusions and in day-long insulin concentrations. Neither insulin resistance nor the insulin secretory response changed after weight loss, whereas there was a significant increase in the rate of insulin clearance during the glucose infusion. It is concluded that 1) obesity is associated with a shift to the left in the glucose-stimulated insulin secretory dose-response curve as well as a decrease in insulin clearance and 2) changes in insulin secretion and insulin clearance in obese women are more a function of insulin resistance than obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号