首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theory concerning the timing of lotic invertebrate drift suggests that daytime-feeding fish cause invertebrates to restrict their drift behavior to the nighttime. However, there is growing evidence that the nighttime foraging of invertebrate predators also contributes to the nocturnal timing of drift, though it is unclear whether the nocturnal behavior of invertebrate predators is innate or proximately caused by fish. In two experiments, one conducted in a fish-bearing stream and a second in a fishless stream, we compared the drift patterns of Baetidae (Ephemeroptera) from channels with and without benthic invertebrate predators. We tested whether invertebrate predators affect the timing of drift, either as a proximate cause of nocturnal drift in the fishless stream (diel periodicity) or as a proximate cause of a pre-dawn peak in drift in the fish-bearing stream (nocturnal periodicity). In the fish-bearing stream experiment, a pre-dawn increase of baetid drift occurred independently of invertebrate predators, indicating that invertebrate predators were not the proximate cause of nocturnal periodicity in the stream. In the fishless stream experiment, invertebrate predators caused more baetid drift at night than during the day, indicating that invertebrate predators caused the nocturnal drift pattern we observed in the stream, and that invertebrate predators can influence drift timing independently of fish. Therefore, we suggest that both visually feeding fish and nocturnally foraging benthic predators, when present, affect the timing of invertebrate drift; visually feeding fish by reducing daytime drift, and benthic predators by increasing nighttime drift.  相似文献   

2.
1. The objective was to determine the major factors affecting the downstream dispersal (drift) of freshwater shrimps, Gammarus pulex. Sample replication and frequency are major problems in the quantification of drift. For the first time, these problems were avoided by sampling the whole stream continuously so that all the shrimps drifting downstream at the sampling point were caught in a net emptied at dusk and dawn in 1966, and every 3 days in 1967. 2. There was no consistent seasonal pattern in drift rates, but a high proportion of annual drift was taken in only a few samples. There was a nocturnal diel pattern of drift with peaks soon after dusk and just before dawn. A power function described the significant (P < 0.001) relationship between drift and flow, and was used to neutralise the dominant effects of flow by standardising total drift over 24 h, nocturnal drift and diurnal drift (drift per 50 m3). These were all significantly (P < 0.001) related to benthos density, but not to date, temperature, or length of the night or day. 3. The relationship between drift values and the independent variables, flow and benthos density, was well described (P < 0.001) by a multiple‐regression model. Adding temperature, date, and/or the length of the night or day did not improve model fit. Variations in flow and benthos density explained 94% of the variation in total drift over 24 h, 97% of the variation in nocturnal drift, but only 44% of the variation in diurnal drift. A power function described (P < 0.001) the relationship between total drift and the volume of water sampled over 3‐day periods in 1967. Flow explained 95% of this drift variation; it was unnecessary to add another variable such as benthos density. 4. The significance of this study is that it avoided the problems associated with the quantification of drift samples. Therefore, the conclusions are more robust than those of many previous studies. A high proportion of the annual drift losses would have been undetected by intermittent sampling. Temperature, season, night or day length had no significant effect on drift densities, and the relationship between drift and benthos densities was proportional, not density dependent. The nocturnal increase in drift could not be interpreted as an antipredator behaviour. The dominance of flow and benthos density was apparent but the quantitative relationships posed further questions, especially those related to drift distances at different velocities.  相似文献   

3.
1. The objectives were (i) to determine experimentally and to model the relationship between mean water velocity and both the mean distance travelled, and the mean time spent, in the drift by freshwater shrimps, Gammarus pulex; (ii) to develop a drift distance–water velocity model from the experimental study, and validate it with field data; (iii) to examine the relationship between drift rate, water velocity and benthic density with the latter expressed as a mean value for the whole stream and a mean value corrected for the distance travelled in the drift. 2. In field experiments at 10 water velocities (0.032–0.962 m s?1), the significant relationship between the mean drift distance and mean water velocity was described both by a power function (power, 0.96) and a linear relationship. The mean drift time was fairly constant at 8.3 s (95% CL ± 0.4). A simple model estimated the drift distance and time spent in the drift by different percentages of the drifting invertebrates. This model predicted correctly the positive relationship between drift rate and water velocity for field data over a year. 3. The relationship between drift rate per hour and the independent variables, water velocity and benthic density, was well described by a multiple‐regression model. Adding temperature and date did not improve model fit. Variations in water velocity and benthic density explained 96% of the variation in nocturnal drift rate (65% to velocity, 31% to benthic density), but only 40% of the variation in diurnal drift rate (29% to velocity, 11% to benthic density). Correcting benthic density for the drift distances did not improve model fit. 4. The significance of this study is that it developed models to predict drift distances and time, values being similar to those obtained in another, larger stream. It also illustrated the importance of spatial scale in the interpretation of drift by showing that when drift distances were taken into account, the impact of drift on the population was higher (4–10% lost day?1) than when drift distances were ignored (usually < 3% lost day?1), especially at a local level.  相似文献   

4.
1. Invertebrate stream drift was sampled bimonthly in the Acheron River, Victoria, Australia, over a period of 18 months. Replicated hourly samples were collected over a 25-h period on each sampling date. A total of 194 taxa were identified in the drift. However, total drift density was dominated by few taxa. 2. Some evidence was obtained for a seasonal pattern in drift: this was most pronounced in relative abundances of individual taxa and the composition of the drift, rather than in total drift densities. Most of the commonly collected taxa reflected the seasonal pattern of total drift. However, some of the common taxa did not. 3. A small number of taxa showed behavioral drift, with a nocturnal increase in drift densities. One species of ‘Baetis’ drifted in high densities over short periods of time around dusk and dawn. It did not drift in higher densities during the night than during the day. The results emphasize the need for drift studies to be more rigorously designed than is typically the case.  相似文献   

5.
Diel drift samples utilizing nets with mesh size less than 200 microns were taken in Linesville Creek, Pennsylvania, an eastern deciduous forest stream, and Inlet Run, Wyoming, an alpine snow melt stream. Identification of drifting Chironomidae larvae to lowest level taxonomic categories indicated 51 species or species group categories representing 51.95% of the total insect drift in Linesville Creek and 18 species or species group categories representing 70.47% of the total insect drift in Inlet Run. Orthocladiinae were the predominant larvae in the drift in Linesville Creek, with 19 species comprising 43.84% of the Chironomidae drift. In decreasing abundance were Chironomini (12 species, 40.36% of Chironomidae drift), Tanytarsini (10 species, 8.89%), and Tanypodinae (10 species, 6.91%). By contrast, Diamesinae were the predominant larvae in the drift in Inlet Run, (5 species, 71.43%) followed by Orthocladiinae (10 species, 27.25%), Tanytarsini (2 species, 1.20%), and Podonominae (1 species, 0.12%). Comparison of drift composition with substrate samples and/ or emergence data indicated a close relationship between relative abundance in drift and relative abundance in the benthos. Behavioral drift patterns with nocturnal peaks were seen for 3 species or species groups in Linesville Creek. Four species with diurnal drift peaks were present in Inlet Run. Analysis of the size distribution of drifting larvae indicates that a mesh size as small as 200 microns is required to resolve diel drift patterns. It is postulated that random factors greatly influence the apparent diel drift pattern of Chironomidae when nets with mesh size in excess of 400 microns are employed in drift studies. Conflicting literature reports of behavioral drift for Chironomidae may be due to differing species composition of drifting larvae and net mesh size related artifacts.  相似文献   

6.
Spray drift can be defined as the quantity of plant protection product that is carried out of the sprayed (treated) area by the action of air currents during the application process. This continues to be a major problem in applying agricultural pesticides. The purpose of this research is to measure and compare the amount of drift for different climatological conditions under field conditions. Spray drift was determined by sampling in a defined downwind area at different positions in a flat meadow using horizontal drift collectors (sedimenting spray drift) and pipe cleaners (airborne spray drift) for a reference spraying. Meteorological conditions were monitored during each experiment. A drift prediction equation for the reference spraying was set up to predict the expected magnitude of sedimenting drift at various drift distances and atmospheric conditions (wind speed and temperature). This equation can be used to compare measurements using other spraying techniques under different weather conditions to the reference spraying. In 2005, more measurements will be performed to validate the statements and the model reflected in this paper.  相似文献   

7.
Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or to escape after encountering a predator. While the control of the diurnal patterns of invertebrate drift activity by fish predators has received considerable interest, it remains unclear whether benthivorous fish reduce or increase drift activity. We performed a large-scale field experiment in a second-order stream to test if invertebrate drift was controlled by two benthivorous fish species (gudgeon Gobio gobio and stone loach Barbatula barbatula). An almost fishless reference reach was compared with a reach stocked with gudgeon and loach, and density and structure of the invertebrate communities in the benthos and in the drift were quantified in both reaches. The presence of gudgeon and stone loach reduced the nocturnal drift of larvae of the mayfly Baetis rhodani significantly, in contrast to the findings of most previous studies that fish predators induced higher night-time drift. Both drift density and relative drift activity of B. rhodani were lower at the fish reach during the study period that spanned 3 years. Total invertebrate drift was not reduced, by contrast, possibly due to differences in vulnerability to predation or mobility between the common invertebrate taxa. For instance, Chironomidae only showed a slight reduction in drift activity at the fish reach, and Oligochaeta showed no reduction at all. Although benthic community composition was similar at both reaches, drift composition differed significantly between reaches, implying that these differences were caused by behavioural changes of the invertebrates rather than by preferential fish consumption. The direction and intensity of changes in the drift activity of stream invertebrates in response to the presence of benthivorous fish may depend on the extent to which invertebrate taxa can control their drifting behaviour (i.e. active versus passive drift). We conclude that invertebrate drift is not always a mechanism of active escape from fish predators in natural streams, especially when benthos-feeding fish are present.  相似文献   

8.
In the Netherlands windbreaks are commonly grown to protect orchards against wind damage and to improve micro-climate. Natural windbreaks of broad-leaved trees can also reduce the risk of surface water contamination caused by spray drift during orchard spraying. Spray drift from pesticide applications is a major concern in the Netherlands, especially drift into water courses. So far, several drift reducing measures have been accepted by water quality control organisations and the Board for the Authorization of Pesticides (CTB), e.g. presence of a windbreak (i.e. 70% drift reduction at early season and 90% drift reduction at full leaf, respectively before and after first of May). From the experiments it was concluded that the risk of drift contamination is high during the early developmental stages of the growing season. The 70% drift reduction at early season as determined in previous experiments, appears to be valid only for windbreaks with a certain degree of developed leaves. At full leaf stage 80-90% drift reduction by the windbreak was measured. The use of evergreen windbreaks or wind-break species that develop in early season can reduce the risk of drift contamination considerably. Also, the combination of drift reducing methods, such as one-sided spraying of the last tree row and a windbreak is an effective method to reduce spray drift in the Netherlands in early season.  相似文献   

9.
Drift and upstream movement were monitored over 14 months in a seasonal upland tropical stream in northeastern Australia. There were distinct seasonal pulses in the drift with variable peak levels in the summer wet season and low more stable levels during the dry season. Drift density ranged from 0.36 to 3.98 animals per m3 (monthly mean = 1.26). There was no correlation between drift density and either benthic density or stream discharge. In the absence of catastrophic drift, drift was dispersive, not depletive in the wet season. A total of 121 taxa were caught in the 14 drift samples. Most taxa had nocturnal maximum drift levels with a peak immediately after sunset, a pattern apparently related to level of light and not temperature. Compensation for drift by upstream-moving nymphs and larvae was least during the wet season and increased during the dry season to a peak of 27% by numbers. Mean compensation was 8.2%. It is suggested that apart from in the wet season when an animal may drift substantial distances, most riffle animals will spend their larval lives in one small stretch of stream.  相似文献   

10.
《Aquatic Botany》2007,86(4):385-392
Arrival at suitable sites for germination and establishment is crucial for hydrochorous plants. Seed deposition in riparian landscapes occurs mainly within litter in drift lines. We investigated whether conditions within drift lines are suitable for seed survival and germination and whether drift lines act as seed sources or sinks for species diversity in riparian fen grasslands.We analysed drift litter in a small river valley in Northern Germany (Upper Eider valley) after typical late winter floods in 2000, 2002 and 2004. The content of viable seeds in drift lines was studied via a germination trial with drift litter samples taken from five fen grassland sites representative of the vegetation of floodplain. Further, seedling recruitment of both abandoned and moderately grazed fen grasslands affected by drift line deposition was compared with equivalent sites without drift lines. Additionally, the decline of viable seeds after the deposition of drift litter was studied. Finally, the relative importance of seed-containing drift litter and microsite availability for seedling recruitment was investigated in a field experiment with the factors disturbance (mowing, large gaps, small gaps, undisturbed control) and addition of (seed-containing) drift litter (yes, no) in an abandoned riparian fen.Seedlings which recruited from drift litter collected at different sites differed in species composition. A nearly 50% reduction of the number of viable seeds in drift litter was observed already during 2 weeks after deposition. Naturally deposited drift lines had a positive effect on the number of seedlings, although an increase of seedling recruitment in areas with drift litter was only observed at the grazed site. Adding drift litter reduced the number of seedlings in the field experiment, while creating gaps enhanced seedling recruitment.These results indicate that in riparian fen grasslands, drift lines can affect species diversity either negatively by hampering germination and/or establishment or positively by increasing seed availability. As the studied river system is comparatively species poor and flooding extension is limited, the role of drift lines as seed source might be of minor importance in the study area.  相似文献   

11.
The seasonal fluctuations of larval macroinvertebrate drift, exuvial drift and larval benthic density were quantitatively examined over a 1-year period in a fourth order, spring-fed stream in the Piedmont area of South Carolina. The drift was dominated by the mayfly Baetis spp. and by two species of blackfly (Prosimulium mixtum and Simulium jenningsi). Peak drift densities were noted during early spring and especially late summer. Strong correlations were noted between larval drift densities and exuvial drift, indicating a relationship between drift and seasonal growth and emergence patterns. Seasonal trends in drift and benthic densities, though less strongly correlated, were also generally similar.  相似文献   

12.
Aiming to establish the most frequent invertebrate taxa in drift at the small spatial scale within a moss-rich karst tufa-precipitating hydrosystem, we sampled drift among microhabitats differing in substratum type and flow conditions along a tufa barrier-cascading lotic reach. Additionally, we addressed the question of the contribution and the potential significance of meiofauna within the overall invertebrate drift at the small spatial scale. During the study period, a total of 60 invertebrate taxa were recorded in the drift. Six of these taxa belonged to the annelid/arthropod meiofauna and they represented 35% of total drift density. Macroinvertebrates found in drift were represented mainly by larval insects. The composition of the most abundant taxa in total drift was as follows: Alona spp. (Cladocera 26.7%), Riolus spp. (Coleoptera: Elmidae 13.2%), Simulium spp. (Diptera: Simuliidae 12.2%), Enchytraeidae (Oligochaeta 10.4%), Hydrachnidia (6.3%), Orthocladinae (Diptera: Chironomidae 3.9%) and Naididae (Oligochaeta 3.6%). Faunal drift densities and amounts of transported particulate matter (PM) were highest at the fast-flowing sites located at the barriers and lowest at the slow-flowing sites within pools. Similarly to the seasonal amounts of transported PM, faunal drift was lowest in winter, and peaked in autumn and in late spring/early summer. Correlation between flow velocity and PM-faunal drift densities suggested a significant effect of the dislodged PM, though a minor influence of discharge and flow velocity on faunal drift. We suggest that the small-scale habitat heterogeneity and the respective feeding and refugial strategies of the fauna, as well as faunal passive dislodgement initiated by the shear forces of the flow were the most important drivers of observed drift patterns.  相似文献   

13.
Summary Larger nymphs within aquatic insect taxa have been frequently observed to be transported down-stream in the stream drift only at night. Others have hypothesized this pattern results primarily from large nymphs' behavioural avoidance of entering drift during daylight, when size-selective, visually-feeding fish predators are most active. This hypothesis assumes that animals can actively control their entry into the drift, which may not be the case under all flow conditions. We experimentally induced streamflow increases and decreases in adjacent riffles in a hydrologically-stable stream during the daytime to examine whether changes in diel patterns of drift abundance and size-distribution of mayflies were consistent with the hypothesis of active avoidance of diurnal drift. We assessed the likelihood of active vs. passive mechanisms of diurnal drift entry and transport for four taxa that differ with respect to body size, morpho-behavioural attributes, microhabitat use, and general propensity to drift. In each of three seasons, diurnal and nocturnal drift samples were collected in three riffles over two diel cycles. Background drift patterns were established on the first day (no flow manipulation). Six h before sunset on the second day, flow was experimentally increased in one riffle, decreased in the second, and not altered in the third (control). Between-day differences in diurnal and nocturnal drift rate and size composition were then compared among the treatment and reference riffles. Responses of two taxa were consistent with active control over drift entry, transport, or both. For Baetis spp., drift-prone mayflies typically preyed upon by fish, diurnal drift rates immediately increased following both flow reduction and flow elevation in all seasons, but only small individuals comprised the drift. Drift by large individuals was delayed until nighttime. Epeorus longimanus also exhibited significant increases in drift rates following flow reduction and elevation, but responses of this large-bodied species were restricted to nighttime. Drift responses for these two taxa were largely independent of direction of hydrologic change, thus indicating a strong behavioural control over drift. By contrast, numbers and sizes of drifting Paraleptophlebia heteronea and Ephemerella infrequens depended strongly on direction of flow change. Drift rates for both species generally declined after flow reduction and increased after flow elevation. Moreover, after flow elevation, larger individuals often drifted diurnally, a finding consistent with expectations under a passive hydrodynamic model. These experiments indicate that size-dependent mayfly drift reflects not only presumed risk from visual fish predators, but also functional attributes of species such as morphology, behaviour, and microhabitat affiliation, which influence aspects of drift entry and transport under variable hydrologic conditions.  相似文献   

14.
Increased mortality of juvenile Atlantic salmon (Salmo salar L.), related to lowered levels of stored energy following the loss of ice cover during winter, has been observed after hydropower development in the subarctic River Alta, northern Norway. Drift samples were compared to examine if drift densities, and thus drift prey availabilities for juvenile salmon, were lower in the ice-free than the ice-covered area. In addition, juvenile salmon stomach contents were compared to benthos and drift in the ice-free area to examine salmon winter feeding habitat. Zooplankton, originating from the reservoir, dominated drift at the ice-free site but had lower densities at the downstream ice-covered site. Excluding zooplankton, Chironomidae comprised most of the remaining drift at both the ice-free and ice-covered site, followed by Ephemeroptera, Plecoptera and Simuliidae. No Trichoptera were found in the drift samples. There was no consistent diel periodicity in drift. Benthos was dominated by Chironomidae, followed by Ephemeroptera, Plecoptera and Trichoptera. Other invertebrates occurred in low numbers. Juvenile salmon demonstrated size-selective feeding and fed mainly on Ephemeroptera, followed by Trichoptera and Plecoptera. No zooplankton and few Chironomidae were found in the stomach samples. Stomach content was more similar to benthos than to drift, indicating a larger extent of benthic than drift feeding. No evidence was found for the hypothesis that lack of ice cover reduced the invertebrate drift or caused diel periodicity in the drift. Differences in drift between areas with and without ice could not account for the observed differences in mortality of juvenile salmon during the winter in these areas.  相似文献   

15.
Summary We carried out an experimental field study in a Swedish stream in order to determine whether mobile predators enhance the drift of stream insects. We increased the density of nymphs of the predaceous perlid stonefly, Dinocras cephalotes, in an experimental section of a stream up to densities in another more densely populated part of the same stream. The drift of several benthic species increased significantly compared to a control section where D. cephalotes were rare. Experiments carried out in September showed a strongly elevated drift response in nymphs of the mayfly Baetis rhodani only, whereas May experiments resulted in increased drift in B. rhodani as well as the amphipod Gammarus pulex, the stonefly Leuctra fusca, chironomids, and the total number of drifting animals. In September, we found that the drift response of Baetis rhodani to predator disturbance was dependent on the size of mayfly nymphs; small nymphs appeared in greater numbers in the drift nets than did large nymphs. A subsequent laboratory analysis of drift lengths of B. rhodani nymphs supported the hypothesis that small nymphs travel in the drift for longer than do large nymphs, particularly in darkness. We suggest that morphological constraints in vision or swimming performance, or both, cause small nymphs to drift longer. In May, size-dependent drift was less obvious, probably because the size of the nymphs was considerably greater than in September.  相似文献   

16.
The diel drift patterns of Chironomidae larvae were investigated in a seventh order section of the Warta River (Central Poland) over two diel cycles during May 1989. Three nets (mesh size 400 m) were installed in a cross section of the Warta River.The estimated drift density was low, but was comparable to that calculated for other large rivers. Spatio-temporal fluctuations in abundance and composition of macroinvertebrate drift, including Chironomidae, were observed with the highest density of drifting macrobenthos recorded near the depositional bank of this river. The ratio benthosdrift indicated differing propensities for of the older instars of a given chironomid taxon to drift. Orthocladiinae larvae were the most abundant subfamily of Chironomidae in drift but not in benthos, reaching up to 73% of the total drifting chironomid larvae. More taxa but fewer individuals (about 20% of the chironomid larvae collected) belonged to the tribe Chironomini, the dominant group in benthos.A major part of chironomid drift collection may represent behavioural drift because the net mesh size used in the Warta River was insufficient to catch the earliest instars (distributional drift). Both at the family and subfamily level chironomid larvae exhibited a distinct nocturnal drift periodicity. Nocturnal periodicity was documented for the dominant species, but due to the low density of many chironomid species, it was impossible to determine their diel drift pattern. Some Chironomidae appeared to be aperiodic.  相似文献   

17.
Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism   总被引:3,自引:0,他引:3  
1. The predominantly nocturnal constrained drift of stream invertebrates is commonly regarded as a behaviour that avoids encounters with visually foraging fish in the water column. The alternative explanation, that drift peaks are caused by bottom-feeding, nocturnal predators, has rarely been tested.
2. We examined these hypotheses by collecting invertebrate drift in five streams in northern Finland: one with brown trout ( Salmo trutta , a drift-feeding fish), one with alpine bullhead ( Cottus poecilopus , a benthic fish), one with both species, and two fishless streams.
3. Drift by Baetis mayflies was aperiodic or slightly diurnal in both fishless streams on all sampling occasions. In contrast, drift was nocturnal in streams with trout and, to a lesser extent, in the stream with bullhead. Non-dipteran prey drifted mainly nocturnally in all streams with fish, whereas Diptera larvae were less responsive to the presence of fish.
4. In laboratory experiments, bullheads were night-active, causing a much higher frequency of drift by touching Baetis at night than during the day. Thus, increased nocturnal drift may serve to avoid both visual predators (a pre-contact response) and benthic fish (a post-contact response). In streams with bottom-feeding fish, nocturnal drift should be caused by increased drift by night rather than by reduced drift by day.  相似文献   

18.
Field drift studies indicated that the nocturnal drift density of E. subvaria nymphs was greater in early May than in early November.Laboratory studies showed that the number of individuals appearing in the drift was a linear function of the duration of the preceding photoperiod. Nymphs had a greater propensity to drift when they were not in a state of active growth than when they were growing. The tendency of individuals in a single laboratory population to drift was observed to change under conditions of constant temperature and randomized photoperiod. This suggests that the shift was due to some internal physiological change rather than to an external cue.It is suggested that drift in E. subvaria functions as a method relocation from fast-water areas to slow-water pools and stream margins. Redistribution to these areas may reduce mortality incurred during spring run-off and during emergence.  相似文献   

19.
A key attribute of riverine food webs is the downstream movement of invertebrates via the water column, or invertebrate drift. Causes of drift include benthic predation, food limitation, and perhaps passive entry, which may occur when invertebrates lose their purchase on stream substrate. However, the relative importance of drift causes is unknown, as is whether the relative importance of drift causes varies across space. Combining observational data on invertebrate herbivore and predator guild densities with in‐stream experiments, we evaluated the relative importance of benthic predation, food limitation, and passive entry as proximate causes of drift for the herbivore guild across the canopy gradient of a montane stream. We found that 1) benthic predation and food limitation were both more important as causes of herbivore drift than passive entry; 2) drift caused by food limitation did not vary with riparian canopy, whereas herbivore density decreased with increasing riparian canopy, and 3) per capita drift increased linearly with increasing density, while per capita drift decreased in a negative hyperbolic fashion with increasing food, indicating that herbivore drift is proportional to herbivore density, and inversely proportional to food. We conclude that invertebrate herbivore drift was overwhelmingly an active process to improve fitness, and that herbivore food did not vary across the canopy gradient, likely because increased herbivory from larger herbivore populations at sunnier sites prevented food from accumulating.  相似文献   

20.
Recent work has revealed that the neural activity patterns correlated with sensation, cognition, and action often are not stable and instead undergo large scale changes over days and weeks—a phenomenon called representational drift. Here, we highlight recent observations of drift, how drift is unlikely to be explained by experimental confounds, and how the brain can likely compensate for drift to allow stable computation. We propose that drift might have important roles in neural computation to allow continual learning, both for separating and relating memories that occur at distinct times. Finally, we present an outlook on future experimental directions that are needed to further characterize drift and to test emerging theories for drift's role in computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号