首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly solvating copolymer was prepared in high yield by introducing a flexible crosslinker, 1,4-butanedioldimethacrylate, into the polystyrene matrix by a free radical aqueous suspension polymerization. A 2 mol% crosslinked resin showed rigidity and mechanical characteristics comparable to those of divinylbenzene-crosslinked polystyrene (Merrifield resin, DVB-PS) support. Swelling and solvation characteristics of the new resin, BDDMA-PS, were much higher than DVB-PS support in all solvents used for solid phase peptide synthesis. The diacrylate crosslinks in the resin network were found to be highly stable even after 48 h treatment with neat TFA, 6 N HCl and 6 N KOH at 110 degrees C. To demonstrate the usefulness of the new resin in high capacity peptide synthesis, a typical difficult peptide, acyl carrier protein (ACP) fragment (65-74), was synthesized on commercially available 1 mol% crosslinked DVB-PS and 2 mol% crosslinked BDDMA-PS resins under identical conditions. A protocol using NMP/DMSO mediated coupling was employed for chain assembly. The yield and purity of the product from BDDMA-PS resin was higher than when the DVB-PS resin was used. The mechanistic reason behind the synthetic efficiency of the new resin was found to be its ability to induce random coil conformation to the growing peptide chains.  相似文献   

2.
Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the peptide amide linker-polyethylene glycol-polystyrene (PAL-PEG-PS) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides.  相似文献   

3.
目的:探索α-促黑激素的合成工艺。方法:采用多肽固相合成法制备α-促黑激素。以Rink amide-MBHA树脂为载体、使用Fmoc保护策略、TBTU、HOBt、DIEA为缩合剂体系,最后用TFA、苯甲硫醚、水、苯酚、乙二硫醇混合液将多肽从树脂上切割下来。结果:合成后的目标多肽产率达64.9%,经过RP-HPLC纯化纯度可达98%,质谱鉴定显示纯化产物与目标多肽理论相对分子质量一致。结论:该方法操作方便,反应结果稳定,为固相合成生产α-促黑激素提供了一种可行的工艺方案。  相似文献   

4.
A highly flexible, mechanically and chemically stable copolymer, tri(propylene glycol) glycerolate diacrylate cross-linked polystyrene (PS-TRPGGDA), was synthesized by the suspension polymerization and employed as a solid support for peptide synthesis. The beaded polymer support containing secondary hydroxyl functional groups in the cross-linker was used as the growth site for peptide synthesis. The procedure is unique and cost-effective in that it avoids the initial functionalization steps required for most of the styrene-based polymer supports. The resin was characterized by 13C-CP-MAS NMR spectroscopy and the morphologic features of the resin were investigated using scanning electron microscopy. Swelling studies conducted on the new support revealed that the PS-TRPGGDA resin undergoes more effective swelling and solvation than PS-DVB resin in all solvents used in peptide synthesis. The efficiency of the new support was demonstrated by synthesizing a 'difficult' sequence Ala-Arg-(Ala)6-Lys and comparing it with commercially available Merrifield and Sheppard resins. The synthetic efficiency was further demonstrated by the synthesis of a 24-residue NR 2A peptide substrate of calcium/calmodulin-binding peptide. The high yield and purity of the peptide synthesized on the novel support indicates the positive role of the flexible and hydrophilic cross-linking agent in the solid support.  相似文献   

5.
A method for the preparation of a biotinylated resin that can be elongated by standard methods of solid-phase peptide synthesis to give peptides biotinylated at the carboxy terminus is described. This methodology is particularly important for the preparation of biotinylated peptides in which a free amino terminus is required. Coupling of N epsilon-9-fluorenylmethoxycarbonyl-(Fmoc)-N alpha-tert-butyloxycarbonyl(Boc)-L- lysine to p-methylbenzhydrylamine resin, followed by removal of the Fmoc protecting group and reaction with (+)-biotin-4-nitrophenyl ester yielded N alpha-Boc-biocytin-p-methyl-benzhydrylamine resin. The utility of this resin was tested by the synthesis of a biotinylated peptide, Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-biocytin-NH2, for use as an in vitro substrate for myristoyl-CoA:protein N-myristoyltransferase (NMT), the enzyme that catalyzes protein N-myristoylation. Analysis of the peptide derivative by HPLC and mass spectrometry revealed a single major product of the expected mass, indicating that the biotin group survived cleavage and deprotection with HF. The biotinylated peptide served as a substrate for NMT, and the resulting myristoylated peptide could be quantitatively recovered by adsorption to immobilized avidin.  相似文献   

6.
Being different from anti-phosphotyrosine antibodies, anti-phosphoserine- or anti-phosphothreonine-specific antibodies with high affinity for the detection of serine/threonine kinase substrates are not readily available. Therefore, chemical modification methods were developed for the detection of phosphoserine or threonine in the screening of protein kinase substrates based on β-elimination and Michael addition. We have developed a biotin-based detection probe for identification of the phosphorylated serine or threonine residue. A biotin derivative induced a color reaction using alkaline phosphate-conjugated streptavidin that amplified the signal. It was effective for the detection and separation of the target peptide on the resin. The detection probe was successfully used in identifying PKA substrates from peptide libraries on resin beads. The peptide library was prepared as a ladder-type, such that the active peptides on the colored resin beads were readily sequenced with the truncated peptide fragments by MALDI-TOF/MS analysis after releasing the peptides from the resin bead through photolysis.  相似文献   

7.
This report describes a Dde resin based attachment strategy for inverse solid-phase peptide synthesis (ISPPS). This attachment strategy can be used for the synthesis of amino terminated peptides with side chains and the carboxyl terminus either protected or deprotected. Amino acid t-butyl esters were attached through their free amino group to the Dde resin. The t-butyl carboxyl protecting group was removed by 50% TFA, and inverse peptide synthesis cycles performed using an HATU/TMP based coupling method. Protected peptides were cleaved from the resin with dilute hydrazine. Side chain protecting groups could then be removed by treatment with TFMSA/TFA. The potential of this approach was demonstrated by the synthesis of several short protected and unprotected peptides in good yield and with low epimerization. Its potential for peptide mimetic synthesis was demonstrated by the synthesis of two peptide trifluoromethylketones.  相似文献   

8.
Four trityl-type (i.e. non-substituted trityl-, o-Cl-trityl-, o-F-trityl- and p-CN-trityl-) amidomethyl polystyrene resins were evaluated comparatively, in terms of the stability of the trityl-ester bond in slightly acidic dichloromethane solutions, and the p-CN-trityl-amidomethyl polystyrene resin was found to be the most stable of them. The above resins were applied, in parallel with Wang benzyl-type resin, well known for its stability in mild acidic conditions, to the Fmoc solid phase synthesis of the 43-amino acid residue long bioactive peptide thymosin beta-4. Independent of their differences in acid sensitivity, the resins seemed to function equally well under the conditions used, since pure thymosin beta-4 was obtained with a final yield of approximately 30% from each resin. The trityl-type amidomethyl polystyrene resins were also applied, in parallel with the Wang resin, to the Fmoc solid phase synthesis of a bioactive peptide containing proline at its C-terminus, i.e. the N-terminal tetrapeptide of thymosin beta-4, AcSDKP. In this case, the best yield (87%) was obtained with the o-Cl-trityl-amidomethyl polystyrene resin, which may be the resin of choice, of those studied, for the Fmoc solid phase peptide synthesis.  相似文献   

9.
An affinity chromatography step was developed for purification of recombinant B-Domain Deleted Factor VIII (BDDrFVIII) using a peptide ligand selected from a phage display library. The peptide library had variegated residues, contained both within a disulfide bond-constrained ring and flanking the ring. The peptide ligand binds to BDDrFVIII with a dissociation constant of approximately 1 microM both in free solution and when immobilized on a chromatographic resin. The peptide is chemically synthesized and the affinity resin is produced by coupling the peptide to an agarose matrix preactivated with N-hydroxysuccinimide. Coupling conditions were optimized to give consistent and complete ligand incorporation and validated with a robustness study that tested various combinations of processing limits. The peptide affinity chromatographic operation employs conditions very similar to an immunoaffinity chromatography step currently in use for BDDrFVIII manufacture. The process step provides excellent recovery of BDDrFVIII from a complex feed stream and reduces host cell protein and DNA by 3-4 logs. Process validation studies established resin reuse over 26 cycles without changes in product recovery or purity. A robustness study using a factorial design was performed and showed that the step was insensitive to small changes in process conditions that represent normal variation in commercial manufacturing. A scaled-down model of the process step was qualified and used for virus removal studies. A validation package addressing the safety of the leached peptide included leaching rate measurements under process conditions, testing of peptide levels in product pools, demonstration of robust removal downstream by spiking studies, end product testing, and toxicological profiling of the ligand. The peptide ligand affinity step was scaled up for cGMP production of BDDrFVIII for clinical trials.  相似文献   

10.
用合成的聚合物作载体,与模型15肽(纯品)偶联,使用Edman降解法进行多肽序列分析。比较了各种类型载体对肽的偶联效果。实验结果表明合成的大孔型四次乙基五胺类树脂载体已经达到国外同类产品水平。  相似文献   

11.
Cross-linked polystyrene-ethyleneglycol acrylate resin (CLPSER) was developed for the solid-phase synthesis of peptide by introducing a cross-linker, O,O'-bis(2-acrylamidopropyl)polyethylene glycol(1900) (Acr(2)PEG), into polystyrene. The cross-linker was prepared by treating acryloyl chloride with O,O'-bis(2-aminopropyl) polyethylene glycol(1900) [(NH(2))(2)PEG] in the presence of diisopropylethylamine. The copolymer was prepared either by bulk or inverse suspension copolymerization of Acr(2)PEG(1900) and styrene using sorbitan monolaurate as the suspension stabilizer, and a mixture of ammonium peroxodisulfate and benzoyl peroxide as the radical initiators. The resin was characterized using gel-phase (13)C NMR, infrared (KBr) spectroscopic techniques and the morphological features of the resin were investigated using scanning electron microscopy photographs. CLPSER showed excellent swelling in a broad range of solvents and was found to be chemically inert to various reagents and solvents used in solid-phase peptide synthesis. To demonstrate the usefulness of the new resin in polypeptide synthesis, the support was derivatized with an 'internal reference' amino acid (norleucine) and a handle 4-(4-hydroxymethyl-3-methoxy)butyric acid. The new resin was compared with commercial supports such as Merrifield and Sheppard resins by synthesizing an acyl carrier protein (65-74) fragment under the same experimental conditions. HPLC profiles revealed the high efficiency of the newly developed support. Resin capability in peptide synthesis was further demonstrated by the solid phase synthesis of a 25-residue peptide from the E2/NS1 region hepatitis C viral polyprotein.  相似文献   

12.
Different resins were examined for their potential use in the solid phase synthesis of protected peptide amides using the 9-fluorenylmethoxycarbonyl (Fmoc) chemical protocol. The model protected peptide amide BocTyr-Gly-Gly-Phe-Leu-Arg(Pmc)NH2 (1) was synthesized on both the acid-labile 4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)phenoxy resin (Rink amide resin) (2) and on resins containing the base-labile linker 4-hydroxymethylbenzoic acid. Of the resins examined only the methylbenzhydrylamine resin containing the 4-hydroxymethylbenzoic acid linkage, which was cleaved by ammonolysis in isopropanol, gave the model peptide 1 in good overall yield (53% including functionalization). Thus the synthesis of protected peptide amides by solid phase synthesis using Fmoc-protected amino acids with t-butyl-type side chain protecting groups is feasible. The choice of peptide-resin linkage and its cleavage conditions, however, are critical to the success of such syntheses. The potential application of this synthetic strategy to the preparation of novel peptide amides is discussed.  相似文献   

13.
Summary Studies leading to optimization of butanediol dimethacrylate-crosslinked polystyrene supports (BDDMA-PS) for solid phase peptide synthesis are delineated. BDDMA-PS copolymers with different crosslink densities were prepared and functionalised with chloromethyl groups. The reactivity of the Lys(2-Cl−Z)−OH residue bound to these polymers through a benzyl ester linkage was investigated by following the kinetics of acylation by the HOBt active ester of Boc-Alanine. From the results it was observed that the rate of peptide bond formation was maximum for a 2% BDDMA crosslinked resin. This resin was compared with a 2% DVB-crosslinked polystyrene resin (DVB-PS). Synthesis of an extremely insoluble, hydrophobic, antiparallel β-sheeted difficult sequence peptide LMVGGVVIA (β 34–42), C-terminal fragment of β-amyloid protein, β (1–42), was carried out on both 2% DVB-PS and 2% BDDMA-crosslinked polystyrene supports. The synthesis of the peptide was carried out using Boc amino acid strategy. Greater extent of swelling of the resino peptide, increased coupling efficiency during the assembly of amino acids and relatively high purity of synthesised peptide were observed in the case of 2% BDDMA-PS polymer.  相似文献   

14.
Achiral dicarboxylic acids were coupled with 2 eq. of the free alpha-amino groups of two fully side-chain protected peptide chains while these were still attached to a synthesis resin. Cleavage from the resin with simultaneous side-chain deprotection afforded two assembled peptide chains with free C-terminals. Suitable functionalization of the achiral dicarboxylic acid alternatively permitted continued peptide synthesis in a C to N orientation leading to a final peptide assembly which, after cleavage from the resin, may have multiple N to C and C to N presentation of one or more epitopes.  相似文献   

15.
In this paper HRMAS NMR was used to investigate whether peptides on a peptidyl resin swollen in aqueous solution can adopt an intramolecular beta-sheet structure. A model peptide YQNPDGSQA, that was previously shown to adopt such a secondary structure in solution, (Blanco et al, J. Am. Chem. Soc., 1993) was grafted onto three different solid supports that swell in aqueous solution to examine the influence of the resin on the structure. Both parameters of resin loading and pH inside the swollen peptidyl resin proved to be important for the physicochemical behaviour of the peptide on the support.  相似文献   

16.
In the solid phase preparation of synthetic peptide libraries, equimolarity of the resultant peptides in the mixture simplifies the identification of active compounds. Two primary methods for the preparation of combinatorial peptide mixtures are currently used. In the first method, the starting resin is divided into equal aliquots, individual amino acids are coupled to each aliquot, and the resin is then recombined. This process is repeated for each position. However, due to the physical process, each resin bead contains only one peptide sequence. Statistically, for mixtures of longer sequences, an ever-increasing amount of resin is necessary to ensure complete representation of each peptide in the library. Thus, each peptide will be represented in the library if a sufficient number of resin beads are used. In addition, the concentration of each peptide in the library depends on both the number of mixture positions in the library and the amount of resin used. In the second method, mixtures of amino acids are coupled simultaneously at each addition step. The proportion of each amino acid in the reaction mixture is varied inversely to its reaction rate such that, ideally, an equimolar mixture of each peptide is synthesized. An advantage of this method over the previous method is that each peptide is ensured to be represented in the library, although not necessarily in equimolar amounts. It is known that not only do the coupling rates of each amino acid vary, but the coupling rates of individual amino acids also change when coupled to different amino acid resins. Consequently, in order to obtain equimolar peptide mixtures through the use of mixtures of protected amino acids, the ratio of reaction rates of one amino acid over another must be constant irrespective of the resin-bound amino acid. If this premise is true, this method of synthesis offers a significant advantage over the previous method since, theoretically, equimolar peptide libraries could be synthesized. The influence of the resin-bound amino acid on the relative reaction rates of incoming amino acids was investigated in the current study. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The avian myeloblastosis virus pp19 protein was separated from the other virus proteins by a rapid and simple purification procedure which yields milligram amounts of homogeneous protein. This protein was then fragmented by digestion with cyanogen bromide. When the mixture of the cyanogen bromide peptides was passed through a 60S avian myeloblastosis virus RNA-cellulose column, only one peptide bound with high affinity to the resin. The peptide migrated on a sodium dodecyl sulfate-polyacrylamide gel with an approximate molecular weight of 2,900 and will be referred to as the p3B peptide. This peptide was also isolated directly by chromatography of the cyanogen bromide-digested pp19 protein on a reverse-phase high-pressure liquid chromatography column. It was again the only cyanogen bromide peptide of the pp19 protein that bound to the RNA affinity resin. The p3B peptide is a basic peptide, as was seen by its rapid migration on acid-urea-polyacrylamide gels and its amino acid composition. A partial amino acid sequence analysis of the p3B peptide indicated that it was derived from the amino terminus of the intact protein. Although the p3B peptide bound to 60S RNA, it did not demonstrate the selective binding of native pp19 to regions of the RNA containing secondary structure.  相似文献   

18.
Affinity purification of fibrinogen using a ligand from a peptide library.   总被引:6,自引:0,他引:6  
An affinity resin containing the peptide ligand Phe-Leu-Leu-Val-Pro-Leu (FLLVPL) has been developed for the purification of fibrinogen. The ligand was identified by screening a solid-phase combinatorial peptide library using an immunostaining technique. The specific binding of fibrinogen to the ligand has been characterized by isothermal calorimetry and adsorption isotherms and is dominated by both hydrophobic interactions and ionic interactions with the N-terminal free amino group. The effective association constant of fibrinogen was substantially higher when the peptide was immobilized on the resin than in solution; moreover, it increased with increasing peptide density, suggesting a cooperative binding effect. A low ionic strength buffer at pH 4 was used successfully to elute adsorbed fibrinogen from the column with high purity, retention of factor XIII crosslinking activity, and minimal, if any, loss of biological function. This general approach to ligand selection and characterization can be used to develop peptide ligands for the affinity purification of diverse proteins on a large scale.  相似文献   

19.
Protected peptides assembled on a phenolic resin support were cleared by peroxide-catalysed hydrolysis. In genenal peptide phenyl ester resins were more labile to nucleophiles than were corresponding Merrifield resin derivatives; transesterification with dimethylaminoethanol providing on alternative cleavage method for peroxide-sensitive peptides. Losses of radiolabelled peptide from both Merrifield and phenolic resins were determined during acid deprotection, base wash and coupling steps in the synthesis of a tetrapeptide. Using 40% (v/v) trifluoroacetic acid in dichloromethane for Boc-deprotection the phenolic resin gave improved results compared to the Merrifield resin. The merits of the procedure for the preparation of protected peptide acids suitable for subsequent condensation reactions were exemplified by the synthesis of an octapeptide sequence of a modified lysozyme.  相似文献   

20.
The success of solid-phase peptide synthesis is often dependent upon solvation of the resin and the growing resin-bound peptide chain. We investigated the relationship between solvent properties and solvation of the resin and peptide-resin in order to obtain satisfactory coupling yields for the rapid solid-phase peptide synthesis, using butyloxycarbonyl-(Boc)-amino acid derivatives, of human-alpha-calcitonin gene-related peptide(8-37) (CGRP(8-37)). Solvation of (p-methylbenzhydrylamine)copoly(styrene-1% divinylbenzene (DVB) (resin) and resin covalently bound to the fully protected amino acid sequence of CGRP(8-37) (peptide-resin) was correlated to solvent Hildebrand solubility (delta) and hydrogen-bonding (delta(h)) parameters. Contour solvation plots of delta(h) vs. delta revealed maximum solvation regions of resin and peptide-resin. Maximum resin solvation occurred with N-methylpyrrolidinone (NMP), NMP : dimethylsulfoxide (DMSO) (8 : 2) and DMSO. Inefficient solvation of the peptide-resin occurred with these solvents and resulted in poor syntheses with average coupling yields of 78.1, 88.9 and 91.8%, respectively. Superior peptide-resin solvation was obtained using dimethylacetamide (DMA) and dimethylformamide (DMF), resulting in significantly higher average coupling yields of 98.0 and 99.5%, respectively. Thus, the region of maximum peptide-resin solvation shifts to solvents with higher delta(h) values. DMF provided the most effective peptide-resin solvation and was the only solvent from which CGRP(8-37) was obtained as a single major product in the crude cleaved material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号