首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroporous microcarriers entrap cells in a mesh network allowing growth to high densities and protect them from high shear forces in stirred bioreactor cultures. We report the growth of Chinese hamster ovary (CHO) cells producing either recombinant human beta-interferon (β-IFN) or recombinant human tissue-plasminogen activator (t-PA) in suspension or embedded in macroporous microcarriers (Cytopore 1 or 2). The microcarriers enhanced the volumetric production of both β-IFN and t-PA by up to 2.5 fold compared to equivalent suspension cultures of CHO cells. Under each condition the cell specific productivity (Q P) was determined as units of product/cell per day based upon immunological assays. Cells grown in Cytopore 1 microcarriers showed an increase in Q P with increasing cell densities up to a threshold of >1 × 108 cells/ml. At this point the specific productivity was 2.5 fold higher than equivalent cells grown in suspension but cell densities above this threshold did not enhance Q P any further. A positive linear correlation (r 2 = 0.93) was determined between the specific productivity of each recombinant protein and the corresponding cell density for CHO cells grown in Cytopore 2 cultures. With a cell density range of 25 × 106 to 3 × 108 cells/ml within the microcarriers there was a proportional increase in the specific productivity. The highest specific productivity measured from the microcarrier cultures was ×5 that of suspension cultures. The relationship between specific productivity and cell density within the microcarriers leads to higher yields of recombinant proteins in this culture system. This could be attributed to the environment within the microcarrier matrix that may influence the state of cells that could affect protein synthesis or secretion.  相似文献   

2.
Growth of Fish Cell Lines on Microcarriers   总被引:1,自引:1,他引:0       下载免费PDF全文
Microcarrier beads were evaluated as substrates for the propagation of five anchorage-dependent fish cell lines. Growth of rainbow trout gonad (RTG-2) and Atlantic salmon cells was limited on microcarriers maintained in suspension. However, stationary microcarriers were suitable substrates for the growth of RTG-2, AS, Chinook salmon embryo (CHSE-214), and fathead minnow cells. Cell yields ranged from 2 × 106 to 2.9 × 106 cells per ml, representing 7- to 10-fold increases over the initial cell concentrations. The yield of new RTG-2 cells per unit volume of growth medium was 2.8 times greater in microcarrier cultures than in standard monolayer cultures. Northern pike cells failed to grow on microcarriers. Yields of infectious pancreatic necrosis virus propagated in microcarrier cultures of RTG-2 cells were more than twice the yields in standard monolayer cultures. The greater economy of microcarrier cultures in terms of growth vessel and medium requirements holds great promise for the large-scale production of anchorage-dependent fish cell cultures and fish viruses.  相似文献   

3.
Primary bovine aortic endothelial cells were cultivated in serum supplemented medium without any additional growth factors. The anchorage dependent cells were propagated on Dormacell® microcarriers with covalently bound dimeric DEAE-groups at the surface of the dextrane beads. Cultivations were performed in 200 ml spinner cultures containing 1 g l–1 to 3 g l–1 of microcarriers. Out of five types of Dormacell® microcarriers with different ion exchange capacities ranging from 0.30 up to 0.65 meq g–1, corresponding to nitrogen contents from 1.2% to 2.9%, respectively, optimal attachment and growth of endothelial cells were obtained with beads of highest nitrogen content (2.9%). Cells were seeded withca. 5 viable cells per microcarrier being sufficient to achieve fully confluent microcarriers after 4 to 5 days. Glucose concentrations decreased from 21 mM to uppermost half of the original concentrations. 4 mM glutamine was rapidly consumed and virtually exhausted after the cells reached confluency. Lactate concentrations raised to a maximum of 7 mM in spinner cultures, but was found to be reutilized in the stationary phase after glutamine limitation occurred. Serine was found to be the second most prominent amino acid being almost exhausted at confluency whereas alanine was produced in noteworthy amounts. Considerable decrease was determined for threonine, lysine and arginine; low consumption rates were observed for leucine, phenylalanine and methionine. All other amino acids did not alter significantly throughout cultivation. These data support that bovine aortic endothelial cells are capable to utilize glucose and glutamine as well as lactic acid (after glutamine exhaustion) as energy and/or carbon source. Finally, batch cultures in a 2 liter membrane stirred bioreactor with bubble-free aeration were performed to produce large quantities of endothelial cells using microcarrier concentrations of 3 g l–1.Abbreviations BAE cells bovine aortic endothelial cells - NCS newborn calf serum - PBS phosphate buffered saline  相似文献   

4.
Recombinant Chinese Hamster Ovary (CHO) cells, engineered for the production of human gamma-glutamyl transferase (GGT), have been grown on Cytodex 1 microcarriers, as aggregates, or as single cells in suspension after adaptation. GGT is a membrane bound enzyme which was not secreted during the culture period. The maximal enzyme activity was found to be directly related to the achieved maximal cell density. Culture of CHO on microcarriers yielded the fastest growth, with a specific growth rate of 0.04 h–1, the highest cell density (near 1.3×106 cells ml–1), and the highest enzyme activity around 300 mU ml–1, which corresponded to a specific cellular level of 20 mU 10–5 cells. GGT could also be produced by growing CHO cells in suspension as single cells or as aggregates. Under these conditions, however, the specific CHO growth rate was significantly slower and the GGT level per cell was divided by a factor 6. Growing CHO cells without microcarriers also resulted in differences in cell metabolism, with a higher conversion yield of glutamine into ammonia, and a higher cell lysis. The catalytic kinetic constants of the enzyme were found identical for the three culture systems.  相似文献   

5.
Weakly adherent cells of the 293 line attached well to the internal surface of polyurethane foam (PUF) and grew to the high density of 6.83 × 107 cells/cm3 PUF in stationary culture. The maximum productivity of tissue plasminogen activator (t-PA) was 0.158 IU/106 cells per day. The productivity decreased at the stationary phase of cell growth, so we designed a PUF-plate packed-bed culture system for high density culture and continuous production of t-PA. A maximal cell density of 3.24 × 107 cells/cm3 PUF and a t-PA productivity of 0.326 IU/106cells per day were obtained in 25-day perfusion cultures. Although the cell density decreased to half that in PUF stationary culture, the t-PA productivity increased twofold and was maintained for 25 culture days.  相似文献   

6.
We have investigated conditions that inhibit the tendency of CHO K1 cells to form cellular bridges between microcarriers and dense clumps of cellular overgrowth in microcarrier cultures. Microcarrier aggregation by cellular bridge formation was found to occur only during periods of rapid cell growth. The level of microcarrier aggregation decreased with increasing agitation intensity. Dense masses of cellular overgrowth formed inside bridges connecting the microcarriers and in clumps that protruded off the microcarrier surface. To replace cells that were continuously sheared from the microcarriers, cell growth occurred preferentially in areas of overgrowth after confluent microcarriers were maintained in a serum-free medium. This ultimately led to poor surface coverage as bare spots developed on the microcarrier away from the areas of dense cellular overgrowth. The development of bare spots was inhibited when confluent microcarriers were maintained in medium supplemented with 1% serum. The development of cellular overgrowth was inhibited by dimethyl sulfoxide. Thus, maintaining confluent microcarriers in medium supplemented with 1% dimethyl sulfoxide and 1% calf serum resulted in microcarriers that appeared similar to monolayer cultures. There was also a decrease in bridging in cultures supplemented with either 1% calf serum or 1% dimethyl sulfoxide/1% calf serum compared to serum-free cultures.  相似文献   

7.
Summary Recombinant Chinese hamster ovary cells were successfully cultured semi-continuously on microcarriers of gelatin or modified dextran under non-selective conditions for up to three weeks. High and constant production rates for human immune interferon and tissue-type plasminogen activator were obtained. For cells that produced interferon, the highest cell concentration and interferon production was obtained with gelatin microcarriers though the specific production when grown in the presence of 0.2% fetal calf serum was slightly higher for cells cultured on dextran microcarriers (0.12 U/cell day versus 0.11 U/cell day). For cells that produced plasminogen activator, a slightly higher cell concentration was obtained for cells grown on dextran microcarriers (9x105 cells/ml versus 7x105 cells/ml). However, the specific and total production rates were significantly higher for cells cultured on gelatin microcarriers (6.7 pg/cell day versus 2.1 pg/cell day). The maximum cell concentration and specific production rate could be increased to 2.3x106 cells/ml and 3.4 pg/cell day for dextran microcarriers by adding 6-aminohexanoic acid to the medium. For gelatin microcarriers, the addition of 6-aminohexanoic acid increased the specific production rate to 14.4 pg/cell day. Cell growth, however, was inhibited.  相似文献   

8.
Anchorage-dependent human antithrombin III-producing recombinant baby hamster kidney (rBHK) cells were cultivated on Cytodex 3 microcarriers in repeated batch mode. During a 3-month experiment four different low-serum (0.025% fetal bovine serum) or serum-free medium formulations were evaluated for (a) the initial growth phase of cells and (b) the subsequent production phase, whereby two free fatty acid (FFA) supplements were examined with respect to their growth-promoting and product-formation-enhancing properties. Selected nutrient and (by)product consumption and production rates (including those for antithrombin III, amino acids, and fatty acids) are reported. The calculated metabolic quotients reflect the prevailing slow growth conditions ( approx. 0.06 day–1) associated with microcarrier cultures. Specific antithrombin III productivities vary singificantly as a function of the feed medium supplementation with FFA. Correspondence to: G. Schmid  相似文献   

9.
The polysaccharide chains of a proteoheparan sulphate located on the endothelial cell surface are responsible for athrombogenicity of blood vessel walls. Mass cultivation of endothelial cells is the only way to isolate adequate amounts of this proteoheparan sulphate. In order to establish a method for fermentation of bovine endothelial cells, colonization of microcarriers, growth phase and cultivation of confluent carriers were optimized. The colonization process was varied relative to the number of beads, number of cells, total volume and kind of vessel. Two basal media were tested at different serum contents by growth assays. The same basal media without serum were supplemented with mitogen, bovine lipoprotein, insulin and transferrin and tested by activity assays on confluent cultures. The best method yields more than 80% of the cells on microcarriers. During the fermentation glucose and lactate concentrations were measured at constant perfusion rate and glucose consumption and lactate production were determined. Under optimized conditions we achieved a final cell titre of 4 x 10(9) cells/l and a calculated cell density of 7-9 x 10(4) cells/cm2 offered substrate surface. The minimal doubling time of the cell culture was about 18 h under optimized fermentation conditions. Removal of the core-protein by enzymatic digestion or beta-elimination releases the endothelial cell surface heparan sulphate.  相似文献   

10.
Polystyrene microcarriers were prepared in four size ranges (53–63 m, 90–125 m, 150–180 m and 300–355 m) and examined for ability to support attachment and growth of human diploid fibroblasts. Cells attached rapidly to the microcarriers and there was a direct relationship between cell attachment and microcarrier aggregation. Phasecontrast and scanning electron microscopic studies revealed that while aggregation was extensive, most of the aggregate consisted of void volume. Cell growth studies demonstrated that human diploid fibroblasts proliferated well in microcarrier aggregates, reaching densities of 2.5–3×106 cells per 2 ml dish after 6 days from an inoculum of 0.5×106 cells per dish. When cells were added to the microcarriers at higher density (up to 5×106 cells per 2-ml culture), there was little net growth but the cells remained viable over a 7-day period. In contrast, cells died when plated under the same conditions in monolayer culture. When the microcarriers were used in suspension culture, rapid cell attachment and rapid microcarrier aggregation also occurred. In 100-ml suspension culture, a cell density of 0.7×106 cells per ml was reached after 7 days from an inoculum of 0.1×106 cells. Based on these data, we conclude that microcarrier aggregation is not detrimental to fibroblast growth. These data also indicate that small microcarriers (53–63 m) (previously thought to be too small to support the growth of diploid fibroblasts) can support fibroblast growth and this occurs primarily because microcarriers in this size range efficiently form aggregates with the cells.  相似文献   

11.
The ability to serially propagate mammalian cells in microcarrier cultures is essential for large-scale operation. The success of such serial propagation depends on viable dissociation of cells from microcarriers and the normal growth and product formation after subsequent reinoculation. The high pH treatment developed for dissociating cells from DEAE-derivatized microcarriers was not as effective for a number of cell strains cultivated on gelatin-coated microcarriers. By prewashing the cell-laden microcarriers with buffer containing a chelating agent, bovine kidney cells, BK, human embryonic foreskin fibroblasts, FS-4, and continuous human kidney cells, TCL-598 which produces prourokinase, were viably dissociated from commercially available gelatin-coated microcarriers, Cytodex-3. Cells dissociated from microcarriers reattached and grew on micro-carriers subsequent to inoculation into subcultures. However, after subculturing, cells may attach at different rates to newly added beads and to conditioned microcarriers which cells had previously grown. It resulted in an uneven cell distribution on microcarriers and inferior growth kinetics. This effect was more profound for BK and FS-4 cells which are propagated with a low multiplication ratio. Specifically, BK cells attach to conditioned beads at a faster rate than to new beads, while FS-4 cells attach to new beads faster than to conditioned beads. Thus, for these two cell strains, a separator was used to separate the microcarriers from the suspension of dissociated cells before subsequent inoculation. For TCL-598 cells, which are propagated at a high multiplication ratio, this dissociation technique can be applied directly without the separation of dissociated cells and conditioned microcarriers. All the three cell lines tested exhibit normal growth kinetics in serial propagation on microcarriers. Furthermore, the production of prourokinase by TCL598 cells serially propagated on microcarriers was comparable to that inoculated from roller bottles.  相似文献   

12.
Autocrine and paracrine interactions between cells are important homeostatic mediators in normal tissues. Alterations to growth factor signalling pathways are likely to play a role in multistep carcinogenesis. In this study normal human endometrial epithelial cells (NHEC) after 3 days in culture were treated with serum-free medium conditioned for 24 h by log phase or confluent cultures of established RL95-2, HEC1A, or AN3CA endometrial carcinoma (EC) cell lines. By day 4, NHEC treated with either log phase or confluent conditioned medium (CM) showed a significant decrease (50–90% of control) in [3H]thymidine ([3H]TdR) incorporation. DNA synthesis was inhibited more by confluent than by log phase CM. By day 7, NHEC treated with CM exhibited fewer colonies per culture, fewer cells per colony, and an increased percentage of single cells. Several growth-regulatory gene products found in the nucleus or at the cell membrane have been shown to be expressed differently in normal and transformed cells. We selected the p53 and c-Ha-ras p21 proteins to further investigate the mechanism of alteration of proliferation in cells treated with carcinoma CM. Thus, by day 7, the percentage of NHEC with nuclear localization of wild type p53 (wt p53) was elevated by treatment with CM. In contrast, CM-treated EC cells continued to proliferate, and showed a decrease in the percentage of cells expressing nuclear wt p53 and an increase in the cytoplasmic expression of c-Ha-ras p21. Our studies show that EC cell lines release factors which inhibit the proliferation of NHEC, thus favoring the proliferation of EC cells.Abbreviations CM conditioned medium - EC endometrial adenocarcinoma - NHEC normal human endometrial epithelial cells  相似文献   

13.
A stable line of baby hamster kidney cells for use in the production of, and subsequent purification of, foot-and-mouth disease virus (FMDV) was grown in large quantities on the cylindrical surfaces of 2-liter Baxter bottles. The bottles, in round wire cages, were rotated on a three-tiered roller mill. The cells retained their rapid growth characteristics and susceptibility to FMDV in a tris(hydroxymethyl)aminomethane buffer-containing medium which was especially formulated for large-scale work. This medium, without being changed, sustained cell growth for 6 to 7 days to yield confluent layers containing 500 to 750 million cells per bottle. In small-scale virus-growth experiments, harvested fluids contained about 103.8 to 108.8 plaque-forming units (PFU) per ml. This corresponded to a yield of 30 to 50 PFU per cell. In production runs with 190 cultures, the infectious fluids usually contained 107.9 to 109.2 PFU per ml, and the mass of essentially pure virus obtained therefrom ranged from 7 to 17 mg concomitant with cumulative infectivity recoveries of about 20%.  相似文献   

14.
Cultivation of gene-engineered Chinese hamster ovary (CHO-K1) cells that produce recombinant human soluble thrombomodulin (rsTM) was investigated to optimize conditions for high-level expression of the protein in a serum-free medium. For economic protein production, oxygenation of cultures with pure O2 permitted sufficient cell growth for high rsTM production with only 1 g/l of microcarriers and a low foetal bovine serum concentration. A longer growth phase (over 5 days) with serum was important to establish sufficient growth of this cell line on the microcarriers for subsequent serum-free culture, and to support a long-term production phase (about 2 months). In the production phase, a high glucose concentration (6.15 g/l) in the serum-free medium was very effective for prolonging the harvest cycle interval. Under these conditions, up to 100 mg/l rsTM was expressed in the conditioned medium. The rates of glucose consumption (G) and lactae production (L) were measured periodically and their ratio (L/G ratio) correlated with rsTM productivity. When the average L/G ratio was lower, reflecting a lower lactate production rate due to appropriate oxygenation of the culture, the specific rsTM production rate increased. Thus it may be possible to estimate protein productivity from L/G ratios calculated from the glucose and lactate measurements. Correspondence to: M. Ogata  相似文献   

15.
Rates of fluid pinocytosis by bovine aortic endothelial cells were measured during various manipulations of growth status in vitro. Sparsely seeded cultures grew exponentially until a confluent monolayer was formed, at which time growth slowed. This change in growth rate coincided with a decline in the rate of pinocytosis to about one-third that in the growing cultures. During the subsequent attainment of maximal cell density in the confluent monolayer, the pinocytic rate remained constant. There was close correlation between 3H-thymidine labelling indices, as measured by autoradiography, and the rates of pinocytosis. Mechanical “wounding” of the confluent monolayer resulted in cell migration and proliferation. Twenty-four hours after “wounding,” rates of pinocytosis per mg. cell protein were significantly enhanced. When regeneration of the monolayer was blocked by cytochalasin B, pinocytosis remained at the same rate as in the uninjured, confluent monolayer. These experiments support, and extend to endothelium, earlier observations that in growing cells pinocytosis proceeds at a higher rate than in non-growing, quiescent cells. Furthermore, they raise the possibility that the transendothelial transport of macromolecules such as lipoproteins by receptor-in-dependent fluid pinocytosis in vivo may be altered by the growth status of the endothelium.  相似文献   

16.
Summary The growth of Madin Darby canine kidney cells on microcarriers was studied at different cell seeding densities. Maximum growth was attained when a cell-to-bead ratio of 7∶1 was used. Under these conditions an initial concentration of above 3×105 cells/ml resulted in a yield of over 2×106 cells/ml in 2 d. The amino acid utilization of cells from Dulbecco's modified Eagle medium was studied under the above conditions. Eight amino acids (arg, cys, gln, ile, leu, met, ser, and val) showed rapid and near complete depletion from the medium. Five amino acids (his, lys, phe, thr, and tyr) showed limited depletion. Two amino acids (ala and gly) were released into the medium by the cells.  相似文献   

17.
We have recently developed a protein-free medium (PFS) able to support the growth of Chinese hamster ovary (CHO) cells in suspension. Upon further supplementation with some plant protein hydrolysates, medium performances reached what could be observed in serum-containing media [Burteau et al. In Vitro Cell. Dev. Biol.-Anim. 39 (2003) 291]. Now, we describe the use of rice and wheat protein hydrolysates, as non-nutritional additives to the culture medium to support productivity and cell growth in suspension or in microcarriers. When CHO-320 cells secreting recombinant interferon-gamma (IFN-γ) were cultivated in suspension in a bioreactor with our PFS supplemented with wheat hydrolysates, the maximum cell density increased by 25% and the IFN-γ secretion by 60% compared to the control PFS. A small-scale perfusion system consisting of CHO-320 cells growing on and inside fibrous microcarriers under discontinuous operation was first developed. Under these conditions, rice protein hydrolysates stimulated recombinant IFN-γ secretion by 30% compared to the control PFS. At the bioreactorscale, similar results were obtained but when compared to shake-flasks studies, nutrients, oxygen or toxic by-products gradients inside the microcarriers seemed to be the main limitation of the system. An increase of the perfusion rate to maintain glucose concentration over 5.5 mM and dissolved oxygen (DO) at 60% was able to stimulate the production of IFN-γ to a level of 6.6 μg h−1 g−1 of microcarriers after 160 h when a cellular density of about 4 × 108 cell g−1 of carriers was reached.  相似文献   

18.
The death rate of Vero cells grown on Cytodex-3 microcarriers was studied as a function of the gas flow rate in a small air-lift loop reactor. The death rate may be described by first-order death-rate kinetics. The first-order death-rate constant as calculated from the decrease in viable cells, the increase in dead cells and the increase in LDH activity is linear proportional to the gas flow rate, with a specific hypothetical killing volume in which all cells are killed of about 2·10–3 m3 liquid per m3 of air bubbles. In addition, an experiment was conducted in the same air-lift reactor with Vero cells grown inside porous Asahi microcarriers. The specific hypothetical killing volume calculated from this experiment has a value of 3·10–4 m3 liquid per m3 of air bubbles, which shows that the porous microcarriers were at least in part able to protect the cells against the detrimental hydrodynamic forces generated by the bubbles.  相似文献   

19.
Viable cells of Micrococcus luteus secrete a proteineous growth factor (Rpf) which promotes the resuscitation of dormant, nongrowing cells to yield normal, colony-forming bacteria. When washed M. luteus cells were used as an inoculum, there was a pronounced influence of Rpf on the true lag phase and cell growth on lactate minimal medium. In the absence of Rpf, there was no increase in colony-forming units for up to 10 days. When the inoculum contained less than 105 cells ml–1, macroscopically observable M. luteus growth was not obtained in succinate minimal medium unless Rpf was added. Incubation of M. luteus in the stationary phase for 100 h resulted in a failure of the cells to grow in lactate minimal medium from inocula of small size although the viability of these cells was close to 100% as estimated using agar plates made from lactate minimal medium or rich medium. The underestimation of viable cells by the most-probable-number (MPN) method in comparsion with colony-forming units was equivalent to the requirement that at least 105 cells grown on succinate medium, 103 cells from old stationary phase, or approximately 10–500 washed cells are required per millilitre of inoculum for growth to lead to visible turbidity. The addition of Rpf in the MPN dilutions led to an increase of the viable cell numbers estimated to approximately the same levels as those determined by colony-forming units. Thus, a basic principle of microbiology –“one cell-one culture”– may not be applicable in some circumstances in which the metabolic activity of “starter” cells is not sufficient to produce enough autocrine growth factor to support cell multiplication. Received: 7 December 1998 / Accepted: 7 April 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号