首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divergent selection between contrasting habitats can sometimes drive adaptive divergence and the evolution of reproductive isolation in the face of initially high gene flow. "Progress" along this ecological speciation pathway can range from minimal divergence to full speciation. We examine this variation for threespine stickleback fish that evolved independently across eight lake-stream habitat transitions. By quantifying stickleback diets, we show that lake-stream transitions usually coincide with limnetic-benthic ecotones. By measuring genetically based phenotypes, we show that these ecotones often generate adaptive divergence in foraging morphology. By analyzing neutral genetic markers (microsatellites), we show that adaptive divergence is often associated with the presence of two populations maintaining at least partial reproductive isolation in parapatry. Coalescent-based simulations further suggest that these populations have diverged with gene flow within a few thousand generations, although we cannot rule out the possibility of phases of allopatric divergence. Finally, we find striking variation among the eight lake-stream transitions in progress toward ecological speciation. This variation allows us to hypothesize that progress is generally promoted by strong divergent selection and limited dispersal across the habitat transitions. Our study thus makes a case for ecological speciation in a parapatric context, while also highlighting variation in the outcome.  相似文献   

2.
Adaptive divergence between adjoining populations reflects a balance between the diversifying effect of divergent selection and the potentially homogenizing effect of gene flow. In most models of migration-selection balance, gene flow is assumed to reflect individuals' inherent capacity to disperse, without regard to the match between individuals' phenotypes and the available habitats. However, habitat preferences can reduce dispersal between contrasting habitats, thereby alleviating migration load and facilitating adaptive divergence. We tested whether habitat preferences contribute to adaptive divergence in a classic example of migration-selection balance: parapatric lake and stream populations of three-spine stickleback ( Gasterosteus aculeatus ). Using a mark-transplant-recapture experiment on morphologically divergent parapatric populations, we showed that 90% of lake and stream stickleback returned to their native habitat, reducing migration between habitats by 76%. Furthermore, we found that dispersal into a nonnative habitat was phenotype dependent. Stream fish moving into the lake were morphologically more lake-like than those returning to the stream (and the converse for lake fish entering the stream). The strong native habitat preference documented here increases the extent of adaptive divergence between populations two- to fivefold relative to expectations with random movement. These results illustrate the potential importance of adaptive habitat choice in driving parapatric divergence.  相似文献   

3.
According to models of ecological speciation, adaptation to adjacent, contrasting habitat types can lead to population divergence given strong enough environment-driven selection to counteract the homogenizing effect of gene flow. We tested this hypothesis in the common chaffinch (Fringilla coelebs) on the small island of La Palma, Canary Islands, where it occupies two markedly different habitats. Isotopic (δ13C, δ15N) analysis of feathers indicated that birds in the two habitats differed in ecosystem and/or diet, and analysis of phenotypic traits revealed significant differences in morphology and plumage colouration that are consistent with ecomorphological and ecogeographical predictions respectively. A genome-wide survey of single-nucleotide polymorphism revealed marked neutral structure that was consistent with geography and isolation by distance, suggesting low dispersal. In contrast, loci putatively under selection identified through genome-wide association and genotype-environment association analyses, revealed a marked adaptive divergence between birds in both habitats. Loci associated with phenotypic and environmental differences among habitats were distributed across the genome, as expected for polygenic traits involved in local adaptation. Our results suggest a strong role for habitat-driven local adaptation in population divergence in the chaffinches of La Palma, a process that appears to be facilitated by a strong reduction in effective dispersal distances despite the birds' high dispersal capacity.  相似文献   

4.
Several recent studies have explored various aspects of animal personality and their ecological consequences. However, the processes responsible for the maintenance of personality variability within a population are still largely unknown. We have recently demonstrated that social personality traits exist in the common lizard (Lacerta vivipara) and that the variation in sociability provides an explanation for variable dispersal responses within a given species. However, we need to know the fitness consequences of variation in sociability across environmental contexts in order to better understand the maintenance of such variation. In order to achieve this, we investigated the relationship between sociability and survival, body growth and fecundity, in one-year-old individuals in semi-natural populations with varying density. 'Asocial' and 'social' lizards displayed different fitness outcomes in populations of different densities. Asocial lizards survived better in low-density populations, while social females reproduced better. Spatiotemporal variation in environmental conditions might thus be the process underlying the maintenance of these personality traits within a population. Finally, we also discuss the position of sociability in a more general individual behavioural pattern including boldness, exploration and aggressiveness.  相似文献   

5.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

6.
Variation in traits affecting preference for, and performance on, new habitats is a key factor in the initiation of ecological specialisation and adaptive speciation. However, habitat and resource use also involves other traits whose influence on ecological and genetic divergence remains poorly understood. In the present study, we investigated the extent of variation of life-history traits among sympatric populations of the pea aphid Acyrthosiphon pisum , which shows several host races that are specialised on various plants of the family Fabaceae plants and is an established model for ecological speciation. First, we assessed the community structure of microbial partners within host populations of the pea aphid. The effect of these microbes on host fitness is uncertain, although there is growing evidence that they may modulate various important adaptive traits of their host such as plant utilisation and resistance against natural enemies. Second, we performed a multivariate analysis on several ecologically relevant features of host populations recorded in the present and previous studies (including microbial composition, colour morph, reproductive mode, and male dispersal phenotype), enabling the identification of correlations between phenotypic traits. We discuss the ecological significance of these associations of traits in relation to the habitat characteristics of pea aphid populations, and their consequences for the evolution of ecological specialisation and sympatric speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 718–727.  相似文献   

7.
Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3°C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.  相似文献   

8.
Gravel Bank Grasshopper (Chorthippus pullus) populations inhabit two contrasting environments, pebbly gravel banks with scarce vegetation cover in mountainous areas along the Alps and lowland grasslands dominated by Common Heather (Calluna vulgaris). Heath populations of C. pullus have been rediscovered only recently, and show a distribution scattered across Central Europe. The wings are reduced in this species; thus, it has low potential for long-distance dispersal. We used sequence data on a newly developed non-coding nuclear marker from three gravel-bank and four heath populations to test whether grasshoppers from the two environments represent distinct lineages. Gravel-bank populations were studied in southern Germany (Bavaria), heath populations in eastern Germany (Brandenburg and Saxony) and Ukraine. We compared those genetic data with an analysis of variation in a suite of morphometric traits. Finally, we combined genetic and morphometric data to reconstruct a plausible scenario for the ecological shift observed in C. pullus. Our newly developed marker did not sort populations from contrasting environments in two monophyletic lineages. Nevertheless, we found a general lack of gene flow between the gravel-bank and heath populations. There was pronounced variation among populations in morphometric traits. That variation was partially partitioned by habitat type, and populations from the same habitat tended to be more similar than those from different habitats. Our data suggest that heath populations originated through northward expansion from multiple southern European refugia, and that the gravel-bank populations represent one of these sources. Patterns of genetic and morphometric divergence suggest that gravel-bank and heath populations may be in the process of incipient speciation.  相似文献   

9.
Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.  相似文献   

10.
Studies of the adaptive significance of variation among conspecific populations often focus on a single ecological factor. However, habitats rarely differ in only a single ecological factor, creating a challenge for identifying the relative importance of the various ecological factors that might be maintaining local adaptation. Here we investigate the ecological factors associated with male body shape variation among nine populations of the poeciliid fish, Heterandria formosa, from three distinct habitats and combine those results with a laboratory study of three of those populations to assess the contributions of genetic and environmental influences to shape variation. Field‐collected animals varied principally in three ways: the orientation of the gonopodium, the intromittent organ; the degree of body depth and streamlining; and the shape of the tail musculature. Fish collected in the spring season were larger and had a more anteriorly positioned gonopodium than fish collected in autumn. Fish collected from lotic springs were larger and more streamlined than those collected from lentic ponds or tidal marshes. Some of the variation in male shape among populations within habitats was associated with population‐level variation in species richness, adult density, vegetative cover, predation risk, and female standard length. Population‐level differences among males in body size, position of the gonopodium, and shape of the tail musculature were maintained among males reared in a common environment. In contrast, population variation in the degree of streamlining was eliminated when males were reared in a common environment. These results illustrate the complicated construction of multivariate phenotypic variation and suggest that different agents of selection have acted on different components of shape.  相似文献   

11.
Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. Our results show that although Diaptomid species differ in their reproductive traits, they also differ in other morphological traits that might indicate ecological differences among species and populations.  相似文献   

12.
Endemic Hawaiian species in the genus Plantago show considerable morphological and ecological diversity. Despite their variation, a recent phylogenetic analysis based on DNA sequence data showed that the group is monophyletic and that sequence variation among species and morphotypes is low. This lack of sequence polymorphisms resulted in an inability to resolve species and population affinities within the most recently derived clade of this lineage. To assess species boundaries, population genetic structure and interpopulation connectivity among the morphologically and ecologically distinct populations within this clade, genetic variation was examined using eight microsatellite loci. Within‐population genetic diversity was found to be lowest in the Maunaiu, Hawai'i population of the endangered P. hawaiensis, and highest in the large P. pachyphylla population from 'Eke, West Maui. Isolation by distance across the range of populations was detected and indicated restricted dispersal. This result is likely to be attributable to few interisland dispersal events in the evolutionary history of this lineage. Genetic differentiation within islands tended to be higher among populations occurring in contrasting bog and woodland habitats, suggesting ecological barriers to gene flow and the potential role of ecological divergence in population diversification. Overall, these results are consistent with findings from phylogenetic analysis of the entire lineage. Our data bring new insights regarding patterns of dispersal and population genetic structure to this endemic and endangered group of island taxa. As island environments become increasingly fragmented, information of this type has important implications for the successful management of these fragile populations and habitats.  相似文献   

13.
We investigated phylogeographic divergence among populations of Galápagos warble finches. Their broad distribution, lack of phenotypic differentiation and low levels of genetic divergence make warbler finches an appropriate model to study speciation in allopatry. A positive relationship between genetic and geographical distance is expected for island taxa. Warbler finches actually showed a negative isolation by distance relationship, causing us to reject the hypothesis of distance-limited dispersal. An alternative hypothesis, that dispersal is limited by habitat similarity, was supported. We found a positive correlation between genetic distances and differences in maximum elevation among islands, which is an indicator of ecological similarity. MtDNA sequence variation revealed monophyletic support for two distinct species. Certhidea olivacea have recently dispersed among larger central islands, while some Certhidea fusca have recently dispersed to small islands at opposite ends of the archipelago. We conclude that females have chosen to breed on islands with habitats similar to their natal environment. Habitat selection is implicated as an important component of speciation of warbler finches, which is the earliest known divergence of the adaptive radiation of Darwin's finches. These results suggest that small populations can harbour cryptic but biologically meaningful variation that may affect longer term evolutionary processes.  相似文献   

14.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   

15.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

16.
Populations of marine fish, even from contrasting habitats, generally show low genetic differentiation at neutral genetic markers. Nevertheless, there is increasing evidence for differences in gene expression among populations that may be ascribed to adaptive divergence. Studying variation in salinity tolerance and gene expression among Atlantic cod (Gadus morhua) from two populations distributed across a steep salinity gradient, we observed high mortality (45% North Sea cod and 80% Baltic Sea cod) in a reciprocal common garden setup. Quantitative RT-PCR assays for expression of hsp70 and Na/K-ATPase α genes demonstrated significant differences in gene regulation within and between populations and treatment groups despite low sample sizes. Most interesting are the significant differences observed in expression of the Na/K-ATPase α gene in gill tissue between North Sea and Baltic cod. The findings strongly suggest that Atlantic cod are adapted to local saline conditions, despite relatively low levels of neutral genetic divergence between populations.  相似文献   

17.
Adaptive divergence may be facilitated if morphological and behavioural traits associated with local adaptation share the same genetic basis. It is therefore important to determine whether genes underlying adaptive morphological traits are associated with variation in behaviour in natural populations. Positive selection on low-armour alleles at the Ectodysplasin (Eda) locus in threespine stickleback has led to the repeated evolution of reduced armour, following freshwater colonization by fully armoured marine sticklebacks. This adaptive divergence in armour between marine and freshwater populations would be facilitated if the low allele conferred a behavioural preference for freshwater environments. We experimentally tested whether the low allele is associated with preference for freshwater by measuring the preference of each Eda genotype for freshwater versus saltwater after acclimation to either salinity. We found no association between the Eda low allele and preference for freshwater. Instead, the low allele was significantly associated with a reduced preference for the acclimation environment. This behaviour may facilitate the colonization of freshwater habitats from the sea, but could also hinder local adaptation by promoting migration of low alleles between marine and freshwater environments.  相似文献   

18.
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population‐level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation‐sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation‐based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered.  相似文献   

19.
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild‐caught individuals. Here, we investigated the contribution of habitat‐specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake–river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake‐like pond set‐up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set‐up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set‐up were based on a plastic response. Finally, gene expression and bacterial communities of wild‐caught individuals and individuals acclimatized to lake‐like pond conditions showed shifts underlying adaptive phenotypic plasticity.  相似文献   

20.
The ecological factors responsible for the evolution of individual differences in animal personality (consistent individual differences in the same behaviour across time and contexts) are currently the subject of intense debate. A limited number of ecological factors have been investigated to date, with most attention focusing on the roles of resource competition and predation. We suggest here that parasitism may play a potentially important, but largely overlooked, role in the evolution of animal personalities. We identify two major routes by which parasites might influence the evolution of animal personality. First, because the risk of acquiring parasites can be influenced by an individual's behavioural type, local parasite regimes may impose selection on personality traits and behavioural syndromes (correlations between personality traits). Second, because parasite infections have consequences for aspects of host 'state', parasites might induce the evolution of individual differences in certain types of host behaviour in populations with endemic infections. Also, because infection often leads to specific changes in axes of personality, parasite infections have the potential to decouple behavioural syndromes. Host-parasite systems therefore provide researchers with valuable tools to study personality variation and behavioural syndromes from a proximate and ultimate perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号