首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged—Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.

This study identifies essential host dependency factors for human coronavirus replication, showing that these can be directly targeted by clinically approved inhibitors and that treatment leads to effective inhibition of coronavirus replication in primary human nasal epithelial cell cultures.  相似文献   

2.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.  相似文献   

3.
In 2002, severe acute respiratory syndrome (SARS)-coronavirus (CoV) appeared as a novel human virus with high similarity to bat coronaviruses. However, while SARS-CoV uses the human angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry, no coronavirus isolated from bats appears to use ACE2. Here we show that signatures of recurrent positive selection in the bat ACE2 gene map almost perfectly to known SARS-CoV interaction surfaces. Our data indicate that ACE2 utilization preceded the emergence of SARS-CoV-like viruses from bats.  相似文献   

4.
The novel coronavirus disease (COVID-19) that emerged in December 2019 had caused substantial morbidity and mortality at the global level within few months. It affected economies, stopped travel, and isolated individuals and populations around the world. Wildlife, especially bats, serve as reservoirs of coronaviruses from which the variant Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) emerged that causes COVID-19. In this review, we describe the current knowledge on COVID-19 and the significance of wildlife hosts in its emergence. Mammalian and avian coronaviruses have diverse host ranges with distinct lineages of coronaviruses. Recombination and reassortments occur more frequently in mixed-animal markets where diverse viral genotypes intermingle. Human coronaviruses have evolved through gene gains and losses primarily in interfaces where wildlife and humans come in frequent contact. There is a gap in our understanding of bats as reservoirs of coronaviruses and there is a misconception that bats periodically transmit coronaviruses to humans. Future research should investigate bat viral diversity and loads at interfaces between humans and bats. Furthermore, there is an urgent need to evaluate viral strains circulating in mixed animal markets, where the coronaviruses circulated before becoming adapted to humans. We propose and discuss a management intervention plan for COVID-19 and raise questions on the suitability of current containment plans. We anticipate that more virulent coronaviruses could emerge unless proper measures are taken to limit interactions between diverse wildlife and humans in wild animal markets.  相似文献   

5.
Although many novel members of the Coronaviridae have recently been recognized in different species, the ecology of coronaviruses has not been established. Our study indicates that bats harbor a much wider diversity of coronaviruses than any other animal species. Dating of different coronavirus lineages suggests that bat coronaviruses are older than those recognized in other animals and that the human severe acute respiratory syndrome (SARS) coronavirus was directly derived from viruses from wild animals in wet markets of southern China. Furthermore, the most closely related bat and SARS coronaviruses diverged in 1986, an estimated divergence time of 17 years prior to the outbreak, suggesting that there may have been transmission via an unknown intermediate host. Analysis of lineage-specific selection pressure also indicated that only SARS coronaviruses in civets and humans were under significant positive selection, also demonstrating a recent interspecies transmission. Analysis of population dynamics revealed that coronavirus populations in bats have constant population growth, while viruses from all other hosts show epidemic-like increases in population. These results indicate that diverse coronaviruses are endemic in different bat species, with repeated introductions to other animals and occasional establishment in other species. Our findings suggest that bats are likely the natural hosts for all presently known coronavirus lineages and that all coronaviruses recognized in other species were derived from viruses residing in bats. Further surveillance of bat and other animal populations is needed to fully describe the ecology and evolution of this virus family.  相似文献   

6.
Viruses have evolved a myriad of strategies for promoting viral replication, survival and spread. Sequence analysis of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) genome predicts several proteins that are unique to SARS-CoV. The search to understand the high virulence of SARS-CoV compared with related coronaviruses, which cause lesser respiratory illnesses, has recently focused on the unique nsp1 protein of SARS-CoV and suggests evolution of a possible new virulence mechanism in coronaviruses. The SARS-CoV nsp1 protein increases cellular RNA degradation and thus might facilitate SARS-CoV replication or block immune responses.  相似文献   

7.
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has generated enormous interest in the biodiversity, genomics and cross-species transmission potential of coronaviruses, especially those from bats, the second most speciose order of mammals. Herein, we identified a novel coronavirus, provisionally designated Rousettus bat coronavirus GCCDC1 (Ro-BatCoV GCCDC1), in the rectal swab samples of Rousettus leschenaulti bats by using pan-coronavirus RT-PCR and next-generation sequencing. Although the virus is similar to Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9) in genome characteristics, it is sufficiently distinct to be classified as a new species according to the criteria defined by the International Committee of Taxonomy of Viruses (ICTV). More striking was that Ro-BatCoV GCCDC1 contained a unique gene integrated into the 3’-end of the genome that has no homologs in any known coronavirus, but which sequence and phylogeny analyses indicated most likely originated from the p10 gene of a bat orthoreovirus. Subgenomic mRNA and cellular-level observations demonstrated that the p10 gene is functional and induces the formation of cell syncytia. Therefore, here we report a putative heterologous inter-family recombination event between a single-stranded, positive-sense RNA virus and a double-stranded segmented RNA virus, providing insights into the fundamental mechanisms of viral evolution.  相似文献   

8.
曾嘉鸣  赵华斌 《兽类学报》2020,40(6):560-570
近年来,健康的蝙蝠体内检测到了很多与人类传染病相关的病毒,包括狂犬病病毒(Rabies virus)、埃博拉病毒(Ebola virus)、严重急性呼吸综合征病毒(SARS-CoV)以及最近新出现的新型冠状病毒(SARS-CoV-2)等。与其他哺乳动物不同的是,蝙蝠在感染了这些病毒后不会表现出明显的临床症状。因此,人类可以通过研究蝙蝠的免疫系统获得抗病毒免疫的新知识。本文综述了蝙蝠抗病毒天然免疫研究的最新进展,指出了蝙蝠在天然免疫方面的特殊性:蝙蝠独有的飞行能力可能导致其演化出一套独特的抗病毒免疫响应机制,同时具有一套独特的机制限制炎症反应。蝙蝠物种的多样性丰富(>1400种),超过了哺乳动物的五分之一。因此对蝙蝠免疫基因的多样性研究,将促进对蝙蝠特殊免疫机制的理解,对人类传染病防治和畜牧业发展具有重要意义。  相似文献   

9.
Numerous viral infections have arisen and affected global healthcare facilities. Millions of people are at severe risk of acquiring several evolving viral infections through several factors. In the present article we have described about risk factors, chance of infection, and prevention methods of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV), human coronaviruses (CoVs) frequently cause a normal cold which is mild and self-restricting. Zoonotic transmission of CoVs such as the newly discovered MERS-CoV and SARS-CoV, may be associated with severe lower respiratory tract infection. The present review provides the recent clinical and pathological information on MERS and SARS. The task is to transform these discoveries about MERS and SARS pathogenesis and to develop intervention methods that will eventually allow the effective control of these recently arising severe viral infections. Global health sector has learnt many lessons through the recent outbreak of MERS and SARS, but the need for identifying new antiviral treatment was not learned. In the present article we have reviewed the literature on the several facets like transmission, precautions and effectiveness of treatments used in patients with MERS-CoV and SARS infections.  相似文献   

10.
11.
Coronaviruses can infect a variety of animals including poultry, livestock, and humans and are currently classified into three groups. The interspecies transmissions of coronaviruses between different hosts form a complex ecosystem of which little is known. The outbreak of severe acute respiratory syndrome (SARS) and the recent identification of new coronaviruses have highlighted the necessity for further investigation of coronavirus ecology, in particular the role of bats and other wild animals. In this study, we sampled bat populations in 15 provinces of China and reveal that approximately 6.5% of the bats, from diverse species distributed throughout the region, harbor coronaviruses. Full genomes of four coronavirues from bats were sequenced and analyzed. Phylogenetic analyses of the spike, envelope, membrane, and nucleoprotein structural proteins and the two conserved replicase domains, putative RNA-dependent RNA polymerase and RNA helicase, revealed that bat coronaviruses cluster in three different groups: group 1, another group that includes all SARS and SARS-like coronaviruses (putative group 4), and an independent bat coronavirus group (putative group 5). Further genetic analyses showed that different species of bats maintain coronaviruses from different groups and that a single bat species from different geographic locations supports similar coronaviruses. Thus, the findings of this study suggest that bats may play an integral role in the ecology and evolution of coronaviruses.  相似文献   

12.
SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike–ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.

A study using a combination of surrogate entry assays and live virus suggests that SARS-CoV-2 may have a broad host-range, revealing that the virus''s spike protein can use a broad range of host ACE2 receptors to enter cells and that the sequence of this protein might have changed during the zoonotic jump into humans.  相似文献   

13.
Bats, probably the most abundant, diverse and geographically dispersed vertebrates on earth, have recently been shown to be the reservoir hosts of a number of emerging viruses responsible for severe human and livestock disease outbreaks. Flying foxes have been demonstrated to be the natural reservoir for Hendra and Nipah viruses. Evidence supporting the possibility of bats as potential reservoirs for SARS coronavirus (SARS-CoV) and Ebola virus has also been reported. The recent discovery of these viruses and other viruses occurring naturally in the bat population provides a unique insight into a diverse pool of potentially emergent and pathogenic viruses. The factors which influence the ability of zoonotic viruses to effectively cross the species barrier from bats to other animal populations are poorly understood. A brief review is provided here on the recently emerged bat viruses and on current and future strategies for research in this area.  相似文献   

14.
The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2–infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.

Studying cross-protection from different coronaviruses is important to inform the research for a universal vaccine. This study uses a mouse-adapted SARS-CoV-2 strain to show that it confers protection from SARS-CoV challenge, suggesting possible immunity from heterologous challenge following natural infection.  相似文献   

15.
Bats are connected with the increasing numbers of emerging and re-emerging viruses that may break the species barrier and spread into the human population. Coronaviruses are one of the most common viruses discovered in bats, which were considered as the natural source of recent human-susceptible coronaviruses, i.e. SARS-COV and MERS-CoV. Our previous study reported the discovery of a bat-derived putative cross-family recombinant coronavirus with a reovirus gene p10, named as Ro-BatCoV GCCDC1. In this report, through a two-year follow-up of a special bat population in one specific cave of south China, we illustrate that Ro-BatCoV GCCDC1 persistently circulates among bats. Notably, through the longitudinal observation, we identified the dynamic evolution of Ro-BatCoV GCCDC1 in bats represented by continuously recombination events. Our study provides the first glimpse of the virus evolution in one longitudinally observed bat population cohort and underlines the surveillance and pre-warning of potential interspecies transmittable viruses in bats.  相似文献   

16.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.  相似文献   

17.
The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals wiith huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.  相似文献   

18.
The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans.  相似文献   

19.
SynopsisSevere Acute Respiratory Syndrome Coronavirus2 (SARS-CoV2) provoked alertness globally. Existing pandemic eruption of infections with SARS-CoV2 has been phrased as coronavirus disease 2019 (covid-19). Worldwide pneumonia outburst attributable to new SARS-CoV2 alleged to be originated in Wuhan city of China and has affectation of enormous danger regarding civic wellbeing. As of 11 March 2020, international death toll owing to outburst of new coronavirus was approximately 3,800, and about 110,000 have been declared as confirmed cases. The novel SARS-CoV2 demonstrated competence with respect to human to human communication; therefore depicted exponential intensification of cases. As of March 23, there are 374,513 collective cases of global infections; more than 16,350 deaths and number of recovered cases is 101,554. Now Europe has turn out into new epicenter of lethal coronavirus.More than one third of the covid 19 cases are currently outside China. Presently Italy is one of worst hit countries followed by Spain. The rapid global widespread of novel covid-19 viruses lead to World Health Organization (WHO) to declare outbreak as pandemic. Given to seriousness of present scenario an accurate and rapid classification of noxious pathogenic virus is important which will lend a hand in opting for best fitting drugs. The screening program will aid saving people’s lives and help to put off the pandemic situation. The scientists and researchers should collaborate nationally and internationally to win the battle against novel covid-19. We aimed to represent covid 19 outburst scenario in general and Saudi Arabia in particular. This short review report very briefly highlights covid-19 syndromes; propagation; Middle East outburst, natural products as cure for viral diseases, probable psychosomatic effects, protective measures and Islamic wisdom. SARS-CoV2 is subsequent coronavirus outburst that perturbs Middle East, after SARS-CoV and MERS-CoV which has been originated in kingdom of Saudi Arabia in year 2002 and 2012 respectively. The report covers information and developments till 23rd of March 2020 on basis of current published data and studies published on different scientific web-pages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号