首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Lipoprotein lipase enhances the cholesteryl ester transfer protein (CETP)-mediated transfer of cholesteryl esters from plasma high density lipoproteins (HDL) to very low density lipoproteins (VLDL). In time course studies the stimulation of cholesteryl ester transfer by bovine milk lipase was correlated with accumulation of fatty acids in VLDL remnants. As the amount of fatty acid-poor albumin in the incubations was increased, there was decreased accumulation of fatty acids in VLDL remnants and a parallel decrease in the stimulation of cholesteryl ester transfer by lipolysis. Addition of sodium oleate to VLDL and albumin resulted in stimulation of the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. The stimulation of transfer of cholesteryl esters into previously lipolyzed VLDL was abolished by lowering the pH from 7.5 to 6.0, consistent with a role of lipoprotein ionized fatty acids. CETP-mediated cholesteryl ester transfer from HDL to VLDL was also augmented by phosholipase A2 and by a bacterial lipase which lacked phospholipase activity. When VLDL and HDL were re-isolated after a lipolysis experiment, both lipoproteins stimulated CETP activity. Postlipolysis VLDL and HDL bound much more CETP than native VLDL or HDL. Lipolysis of apoprotein-free phospholipid/triglyceride emulsions also resulted in enhanced binding of CETP to the emulsion particles. Incubation conditions which abolished the enhanced cholesteryl ester transfer into VLDL remnants reduced binding of CETP to remnants, emulsions, and HDL. In conclusion, the enhanced CETP-mediated transfer of cholesteryl esters from HDL to VLDL during lipolysis is related to the accumulation of products of lipolysis, especially fatty acids, in the lipoproteins. Lipids accumulating in VLDL remnants and HDL as a result of lipolysis may augment binding of CETP to these lipoproteins, leading to more efficient transfer of cholesteryl esters from HDL to VLDL.  相似文献   

2.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

3.
In recent years, it has been established that lipoprotein lipase (LPL) is partly associated with circulating lipoproteins. This report describes the effects of physiological amounts of very low density lipoprotein (VLDL)-bound LPL on the cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester transfer (CET) from high density lipoprotein (HDL) to VLDL. Three patients with severe LPL deficiency exhibited a strong decrease in net mass CET that was more than 80% lower than that of common hypertriglyceridemic subjects. Recombination experiments showed that this was due to an abnormal behavior of the VLDL fraction. Replacement of the latter by normal VLDL totally normalized net mass CET. We therefore prepared VLDL containing controlled amounts of bound LPL that we used as CE acceptors in experiments involving unidirectional radioisotopic CET measurements. These were carried out either in the absence or in the presence of inhibitors of LPL lipolytic activity. When LPL-induced lipolysis was totally blocked, the stimulating effect of the enzyme on the CETP-dependent CET was only reduced by about 50%, showing that it did not entirely result from its lipolytic action. These data were dependent upon neither the type of LPL inhibitor (E600 or THL) nor the source of CETP (delipidated plasma or partially purified CETP). Thus, in addition to the well-known stimulating effect of LPL-dependent lipolysis on CET, our work demonstrates that physiological amounts of VLDL-bound LPL may facilitate CET through a mechanism partially independent of its lipolytic activity.  相似文献   

4.
We have studied the cholesteryl ester transfer between HDL and VLDL in cyclophosphamide-treated rabbits, in order to explain the abnormal cholesteryl ester partition between these two lipoprotein classes. The hypertriglyceridemia caused by treatment with the drug was associated with cholesteryl ester- and triacylglycerol-rich VLDL and with HDL poor in esterified cholesterol but relatively enriched in triacylglycerol. These two lipoprotein classes were characterized by their chemical composition and by gel filtration chromatography. VLDL particles were slightly larger in size, compared with controls. Different transfer combinations were envisaged between these abnormal lipoproteins and control ones. The transfer study involved the plasma fraction of d greater than 1.21 g/ml containing the cholesteryl ester transfer protein (CETP). It appeared that the chemical composition of lipoproteins was responsible for the level of cholesteryl ester transfer between lipoproteins. Actually, when the cholesteryl ester acceptor lipoproteins (VLDL) were enriched in triacylglycerol, the transfer was enhanced. Therefore, the effect of lipolysis on the transfer has also been explored. Lipoprotein lipase seemed to enhance the transfer of cholesteryl ester from HDL to VLDL when these lipoproteins were normal, but an important decline was obtained when triacylglycerol-rich VLDL were lipolyzed. This study defines the relationship between lipoprotein chemical composition and transfer activity of cholesteryl ester from HDL to VLDL.  相似文献   

5.
The fate of cholesteryl esters in high density lipoprotein (HDL) was studied to determine whether the transfer of esterified cholesterol from HDL to other plasma lipoproteins occurred to a significant extent in man. HDL cholesteryl ester, labelled in vitro with [3H] cholesterol, was injected into human subjects. Labelling of cholesteryl esters in very low density (VLDL) occurred rapidly and by 3 h, the esterified cholesterol in VLDL reached peak specific radioactivity. The removal rate of cholesteryl esters from HDL appeared to be exponential and of the order of 0.2/h; calculation of the apparent flux was about 150 mg/h which approximates reported values for total cholesterol esterification in human plasma in vivo. The rapid rate of labelling of VLDL from HDL suggests that the transfer of HDL cholesteryl esters to VLDL may represent a significant pathway for the disposal of HDL cholesterol.  相似文献   

6.
In order to determine the effects of a plasma phospholipid transfer protein on the transfer of phospholipids from very low density lipoproteins (VLDL) to high density lipoproteins (HDL) during lipolysis, biosynthetically labeled rat 32P-labeled VLDL was incubated with human HDL3 and bovine milk lipoprotein lipase (LPL) in the presence of the plasma d greater than 1.21 g/ml fraction or a partially purified human plasma phospholipid transfer protein (PTP). The addition of either the PTP or the d greater than 1.21 g/ml fraction resulted in a 2- to 3-fold stimulation of the transfer of phospholipid radioactivity from VLDL into HDL during lipolysis. In the absence of LPL, the PTP caused a less marked stimulation of transfer of phospholipid radioactivity. Both the d greater than 1.21 g/ml fraction and the PTP enhanced the transfer of VLDL phospholipid mass into HDL, but the percentage transfer of phospholipid radioactivity was greater than that of phospholipid mass, suggesting stimulation of both transfer and exchange processes. Stimulation of phospholipid exchange was confirmed in experiments where PTP was found to augment transfer of [14C]phosphatidylcholine radioactivity from HDL to VLDL during lipolysis. In experiments performed with human VLDL and human HDL3, both the d greater than 1.21 g/ml fraction and the PTP were found to stimulate phospholipid mass transfer from VLDL into HDL during lipolysis. Analysis of HDL by non-denaturing polyacrylamide gradient gel electrophoresis showed that enhanced lipid transfer was associated with only a slight increase in particle size, suggesting incorporation of lipid by formation of new HDL particles. In conclusion, the plasma d greater than 1.21 g/ml fraction and a plasma PTP enhance the net transfer of VLDL phospholipids into HDL and also exchange of the phospholipids of VLDL and HDL. Both the transfer and exchange activities of PTP are stimulated by lipolysis.  相似文献   

7.
Baboons from some families have a higher concentration of plasma high density lipoproteins (HDL) on a chow diet and accumulate large HDL (HDL1) when challenged with a high cholesterol and high saturated fat (HCHF) diet. HDL1 from high HDL1 animals contained more (1.5-fold) cholesteryl ester than HDL (HDL2 + HDL3) from high or low HDL1 animals. HDL from high HDL1 baboons had lower triglyceride content than that from low HDL1 baboons. HDL3 or HDL labeled with [3H]cholesteryl linoleate was incubated with entire lipoprotein fraction (d less than 1.21 g/ml) or very low density lipoprotein + low density lipoprotein (VLDL + LDL) (d less than 1.045 g/ml) and with lipoprotein-deficient serum (LPDS), and the radioactive cholesteryl ester and mass floating at d 1.045 g/ml (VLDL + LDL) after the incubation was measured. The transfer of cholesteryl esters from either HDL or HDL3, prepared from plasma of high HDL1 animals fed chow or the HCHF diet, was slower than the transfer from either HDL or HDL3 of low HDL1 animals, regardless of the source of transfer activity or the ratio of LDL:HDL-protein used in the assay. Addition of HDL from high HDL1 baboons into an assay mixture of plasma components from low HDL1 baboons decreased the transfer of cholesteryl ester radioactivity and mass from HDL to VLDL and LDL. In addition to HDL, a fraction of intermediate density lipoprotein (IDL) and denser HDL were also effective in inhibiting the transfer. These observations suggest that accumulation of HDL1 in high HDL1 baboons fed an HCHF diet is associated with a slower transfer of cholesteryl esters from HDL to LDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Purified human cholesteryl ester transfer protein (CETP) has been found, under certain conditions, to promote changes to the particle size distribution of high-density lipoproteins (HDL) which are comparable to those attributed to a putative HDL conversion factor. When preparations of either the conversion factor or CETP are incubated with HDL3 in the presence of very-low-density lipoproteins (VLDL) or low-density lipoproteins (LDL), the HDL3 are converted to very small particles. The possibility that the conversion factor may be identical to CETP was supported by two observations: (1) CETP was found to be the main protein constituent of preparations of the conversion factor and (2) an antibody to CETP not only abolished the cholesteryl ester transfer activity of the conversion factor preparations but also inhibited changes to HDL particle size. In additional studies, the changes to HDL particle size promoted by purified CETP were inhibited by the presence of fatty-acid-free bovine serum albumin; by contrast, albumin had no effect on the cholesteryl ester transfer activity of the CETP. The possibility that albumin may inhibit changes to HDL particle size by removing unesterified fatty acids from either the lipoproteins or CETP was tested by adding exogenous unesterified fatty acids to the incubations. In incubations of HDL with either VLDL or LDL, sodium oleate had no effect on HDL particle size. However, when CETP was also present in the incubation mixtures the capacity of CETP to reduce the particle size of HDL was greatly enhanced by the addition of sodium oleate. It is concluded that the changes in HDL particle size which were previously attributed to an HDL conversion factor can be explained in terms of the interacting effects of CETP and unesterified fatty acids.  相似文献   

9.
The plasma cholesteryl ester transfer protein (CETP) catalyzes the transfer of cholesteryl esters from high density lipoproteins (HDL) to triglyceride-rich lipoproteins and plays a major role in the catabolism of HDL. Lipoprotein lipase (LPL) is the rate-limiting enzyme for hydrolysis of circulating triglyceride and is involved in HDL formation. We show that tissues containing LPL are major sources of CETP mRNA in several mammalian species, including some with low cholesteryl ester transfer activity in plasma. In hamsters, adipose tissue and heart were found to be the richest sources of both CETP and LPL mRNA; in situ hybridization studies showed that the same cell types (i.e. adipocytes or myocytes) contained CETP and LPL mRNA in these tissues. Isolated adipocytes synthesized active CETP. Dietary studies revealed a complex pattern of response of CETP mRNA levels in different tissues, which showed partial similarity to the changes in LPL mRNA abundance. However, high cholesterol diets resulted in increased CETP mRNA abundance in adipose tissue, heart, and skeletal muscle, without equivalent changes in LPL mRNA. Plasma HDL cholesteryl ester levels showed strong inverse correlations with CETP mRNA abundance in adipose tissue. The results suggest a conserved function of CETP in adipose tissue and heart, such as a co-ordinate action with LPL to enhance HDL turnover. Although there is considerable overlap in the tissue- and cell-specific pattern of CETP and LPL gene expression, dietary studies revealed only limited parallelism in response at the mRNA level. The increase in CETP mRNA in peripheral tissues in response to increased dietary cholesterol suggests that local induction of CETP synthesis may help to recycle cholesterol deposited in these tissues during lipolysis of dietary lipoproteins.  相似文献   

10.
The effects of saturated, monounsaturated and polyunsaturated non-esterified fatty acids on the rate of transfer of radiolabeled cholesteryl esters from high density lipoproteins (HDL) to low density lipoproteins (LDL), induced by the cholesteryl ester transfer protein (CETP), have been studied. Human high-density lipoproteins-subfraction 3 (HDL3) containing radiolabeled cholesteryl esters were incubated with LDL at 37 degrees C with or without CETP and in the absence or in the presence of non-esterified fatty acids. Less than 6% of the total radioactivity was recovered in the LDL fraction after incubation of HDL3, and LDL for 3 h at 37 degrees C in the absence of CETP, regardless of whether or not non-esterified fatty acids were added. The addition of CETP to the incubation mixture induced a time-dependent redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. Non-esterified fatty acids were found to alter the rate of transfer of cholesteryl esters induced by CETP. While short chain saturated non-esterified fatty acids (caprylic and capric acids) had no effect on the rate of transfer of cholesteryl esters, the medium and long chain ones (lauric, myristic, palmitic and stearic acids) significantly increased the CETP-mediated transfers from HDL3 to LDL. At low concentrations, unsaturated fatty acids also stimulated the CETP-mediated redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. As the concentration of either oleic, linoleic or arachidonic acids increased to higher levels, a significant proportion of fatty acids remained unassociated with lipoprotein particles. Under these circumstances the transfer process was inhibited. These results show that non-esterified fatty acids can modulate the CETP-mediated transfer of cholesteryl esters from HDL to LDL and that this effect is dependent on both the length and the degree of unsaturation of their monomeric carbon chain.  相似文献   

11.
The role of human plasma cholesteryl ester transfer protein (CETP) in the cellular uptake of high density lipoprotein (HDL) cholesteryl ester (CE) was studied in a liver tumor cell line (HepG2). When HepG2 cells were incubated with [3H]cholesteryl ester-labeled HDL3 in the presence of increasing concentrations of CETP there was a progressive increase in cell-associated radioactivity to levels that were 2.8 times control. The CETP-dependent uptake of HDL-CE was found to be saturated by increasing concentrations of both CETP and HDL. The CETP-dependent uptake of CE radioactivity increased continuously during an 18-h incubation. In contrast to the effect on cholesteryl ester, CETP failed to enhance HDL protein cell association or degradation. Enhanced uptake of HDL cholesteryl ester was shown for the d greater than 1.21 g/ml fraction of human plasma, partially purified CETP, and CETP purified to homogeneity, but not for the d greater than 1.21 g/ml fraction of rat plasma which lacks cholesteryl ester transfer activity. HDL cholesteryl ester entering the cell under the influence of CETP was largely degraded to free cholesterol by a process inhibitable by chloroquine. CETP enhanced uptake of HDL [3H]CE in cultured smooth muscle cells and to a lesser extent in fibroblasts but did not significantly influence uptake in endothelial cells or J774 macrophages. These experiments show that, in addition to its known role in enhancing the exchange of CE between lipoproteins, plasma CETP can facilitate the in vitro selective transfer of CE from HDL into certain cells.  相似文献   

12.
Cholesteryl ester transfer protein may play a role in the cholesteryl ester metabolism between high density lipoproteins (HDL) and apolipoprotein B-containing lipoproteins. To investigate relationship between HDL and cholesteryl ester transfer protein (CETP) activity in the development of atherosclerosis, the present study has focused on CETP activity in the patients with familial hypercholesterolemia (GH). HDL-C and HDL-C/apo A-I mass ratio in heterozygous FH were lower than those in normolipidemic controls. There was a 2-fold increase in total CETP activity in incubated FH serum compared with normolipidemic controls. Assays for CETP activity in the lipoprotein deficient serum (d greater than 1.215 g/ml) were carried out by measuring the transfer of radioactive cholesteryl ester from HDL (1.125 less than d less than 1.21 g/ml) to LDL (1.019 less than d less than 1.060 g/ml). CETP activities in heterozygous FH (79 +/- 4 nmol/ml/h) was significantly higher than those in normolipidemic controls (54 +/- 6 nmol/ml/h). The increased total cholesteryl ester transfer mainly results from increased CETP activity in the d greater than 1.215 g/ml, possibly reflecting an increase in CETP mass in serum. Increased CETP activity in the d greater than 1.215 g/ml was correlated positively with IDL-cholesterol/triglyceride mass ratio (r = 0.496, p less than 0.01), and negatively with HDL-cholesterol/apo A-I mass ratio (r = -0.334, p less than 0.05). These results indicate that the enhanced CETP activities may contribute to increase risk for developing atherosclerosis in FH by changing the distribution of cholesteryl ester in serum lipoproteins.  相似文献   

13.
Although numerous studies have investigated the relationship between cholesteryl ester transfer protein (CETP) and high density lipoprotein (HDL) remodeling, the relationship between CETP and low density lipoproteins (LDL) is still not fully understood. In the present study, we examined the effect of the inhibition of CETP on both LDL oxidation and the uptake of the oxidized LDL, which were made from LDL under condition of CETP inhibition, by macrophages using a monoclonal antibody (mAb) to CETP in incubated plasma. The 6-h incubation of plasma derived from healthy, fasting human subjects led to the transfer of cholesteryl ester (CE) from HDL to VLDL and LDL, and of triglycerides (TG) from VLDL to HDL and LDL. These net mass transfers of neutral lipids among the lipoproteins were eliminated by the mAb. The incubation of plasma either with or without the mAb did not affect the phospholipid compositions in any lipoproteins. As a result, the LDL fractionated from the plasma incubated with the mAb contained significantly less CE and TG in comparison to the LDL fractionated from the plasma incubated without the mAb. The percentage of fatty acid composition of LDL did not differ among the unincubated plasma, the plasma incubated with the mAb, and that incubated without the mAb. When LDL were oxidized with CuSO4, the LDL fractionated from the plasma incubated with the mAb were significantly resistant to the oxidative modification determined by measuring the amount of TBARS and by continuously monitoring the formation of the conjugated dienes, in comparison to the LDL fractionated from the plasma incubated without the mAb. The accumulation of cholesteryl ester of oxidized LDL, which had been oxidized for 2 h with CuSO4, in J774.1 cells also decreased significantly in the LDL fractionated from the plasma incubated with mAb in comparison to the LDL fractionated from the plasma incubated without the mAb. These results indicate that CETP inhibition reduces the composition of CE and TG in LDL and makes the LDL resistant to oxidation. In addition, the uptake of the oxidized LDL, which was made from the LDL under condition of CETP inhibition, by macrophages also decreased.  相似文献   

14.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

15.
Plasma cholesteryl esters, synthesized within high density lipoproteins (HDL), may be transferred from HDL particles to other lipoproteins by plasma cholesteryl ester transfer protein (CETP). Alcohol consumption is associated with increased HDL cholesterol concentration and reduced plasma CETP activity. The alcohol-induced decrease in CETP activity may be due to a low concentration of CETP in plasma or the inhibition of CETP by specific inhibitor proteins or alterations in the composition of plasma lipoproteins. The first two possibilities are studied further in this paper using data on 47 alcohol abusers and 31 control subjects. The activity of CETP was measured as the rate of cholesteryl ester transfer between radio-labeled low density lipoproteins and unlabeled HDL using an in vitro method independent of endogenous plasma lipoproteins. Plasma CETP concentration was determined by a Triton-based radioimmunoassay. The alcohol abusers consuming alcohol (on average 154 g/day) had 28% higher HDL cholesterol (P less than 0.01), 27% lower plasma CETP concentration (P less than 0.001), and 22% lower plasma CETP activity (P less than 0.001) than the controls. Plasma CETP concentration showed a negative correlation with HDL cholesterol among all the subjects (r = -0.317, P less than 0.01) but not among the alcohol abusers alone (r = -0.102, N. S.). During 2 weeks of alcohol withdrawal, plasma CETP concentration and activity of 8 subjects increased, whereas HDL cholesterol decreased by 42% (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Plasma cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters (CE) between lipoproteins and was reported to also directly mediate the uptake of high density lipoprotein (HDL) CE by human Hep G2 cells and fibroblasts. The present study investigates that uptake and its relationship to a pathway for "selective uptake" of HDL CE that does not require CETP. HDL3 labeled in both the CE and apoprotein moieties was incubated with Hep G2 cells. During 4-h incubations, CE tracer was selectively taken up from doubly labeled HDL3 in excess of apoA-I tracer, and added CETP did not modify that uptake. However, during 18-20-h incubations, CETP stimulated the uptake of CE tracer more than 4-fold without modifying the uptake of apoA-I tracer. This suggested that secreted products, perhaps lipoproteins, might be required for the CETP effect. Four inhibitors of lipoprotein uptake via low density lipoprotein (LDL) receptors (heparin, monensin, an antibody against the LDL receptor, and antibodies against the receptor binding domains of apoB and apoE) effectively blocked the CETP stimulation of CE tracer uptake. Heparin caused an increase in CE tracer in a d less than 1.063 g/ml fraction of the medium that more than accounted for the heparin blockade of CETP-stimulated CE uptake. CETP did not affect the uptake of doubly labeled HDL3 by human fibroblasts, even at twice plasma levels of activity, and heparin did not modify uptake of HDL3 tracers. Thus the CETP effect on Hep G2 cells can be accounted for by transfer of HDL CE to secreted lipoproteins which are then retaken up, and there is no evidence for a direct effect of CETP on cellular uptake of HDL CE.  相似文献   

17.
Recombinant high density lipoprotein (rHDL) particles were prepared by cosonication of purified lipids and human apoproteins and incubated with partly purified cholesteryl ester transfer protein (CETP) and low density lipoprotein (LDL) containing [3H]cholesteryl ester. Increasing the triglyceride content relative to cholesteryl ester in rHDL significantly decreased the ability of the particles to accept cholesteryl esters transferred by CETP. Kinetic analysis of the data was performed to numerically define the maximum velocity of lipid transfer, Tmax, and the HDL concentration required for half maximal velocity, KH. Increases in rHDL-triglyceride content were shown to result in a significant reduction in the Tmax without a major change in KH. When the free cholesterol content was increased relative to phospholipid, the ability of the particles to accept cholesteryl esters was also decreased in a similar manner. Conversely, rHDL prepared from purified apoprotein A-I, A-II, or mixtures of both, had significantly elevated Tmax and KH values for their interaction with CETP. The results suggest that increases in triglyceride or free cholesterol content of an rHDL particle decrease the catalytic ability of CETP by noncompetitive inhibition. In addition, some component(s) of HDL apoproteins, other than A-I or A-II, were shown to uncompetitively inhibit the activity of CETP, by modifying both Tmax and the KH for the reaction. This study has shown that altered HDL composition may have marked effects on the transfer and equilibration of cholesteryl esters within the HDL pool.  相似文献   

18.
Apolipoprotein (apo) A-I-containing lipoproteins can be separated into two subfractions, pre-beta HDL and alpha HDL (high density lipoproteins), based on differences in their electrophoretic mobility. In this report we present results indicating that these two subfractions are metabolically linked. When plasma was incubated for 2 h at 37 degrees C, apoA-I mass with pre-beta electrophoretic mobility disappeared. This shift in apoA-I mass to alpha electrophoretic mobility was blocked by the addition of either 1.4 mM DTNB or 10 mM menthol to the plasma prior to incubation, suggesting that lecithin:cholesterol acyltransferase (LCAT) activity was involved. There was no change in the electrophoretic mobility of either pre-beta HDL or alpha HDL when they were incubated with cholesterol-loaded fibroblasts. However, after exposure to the fibroblasts, the cholesterol content of the pre-beta HDL did increase approximately sixfold, suggesting that pre-beta HDL can associate with appreciable amounts of cellular cholesterol. Pre-beta HDL-like particles appear to be generated by the incubation of alpha HDL with cholesteryl ester transfer protein (CETP) and either very low density lipoproteins (VLDL) or low density lipoproteins (LDL). This generation of pre-beta HDL-like particles was documented both by immunoelectrophoresis and by molecular sieve chromatography. Based on these findings, we propose a cyclical model in which 1) apoA-I mass moves from pre-beta HDL to alpha HDL in connection with the action of LCAT and the generation of cholesteryl esters within the HDL, and 2) apoA-I moves from alpha HDL to pre-beta HDL in connection with the action of CETP and the movement of cholesteryl esters out of the HDL. Additionally, we propose that the relative plasma concentrations of pre-beta HDL and alpha HDL reflect the movement of cholesteryl esters through the HDL. Conditions that result in the accumulation of HDL cholesteryl esters will be associated with low concentrations of pre-beta HDL, whereas conditions that result in the depletion of HDL cholesteryl esters will be associated with elevated concentrations of pre-beta HDL. This postulate is consistent with published findings in patients with hypertriglyceridemia and LCAT deficiency.  相似文献   

19.
Studies have been performed to determine the involvement of very-low-density lipoproteins (VLDL), cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) in the formation of very small HDL particles. Human whole plasma has been incubated for 6 h at 37 degrees C in the absence and in the presence of various additions. There was minimal formation of very small HDL in incubations of non-supplemented plasma or in plasma supplemented with either VLDL, CETP or HL alone; nor were small HDL prominent after incubating plasma supplemented with mixtures of VLDL plus CETP, VLDL plus HL or CETP plus HL. By contrast, when plasma was supplemented with a mixture containing all three of VLDL, CETP and HL, incubation resulted in an almost total conversion of the HDL fraction into very small particles of radius 3.7 nm. The appearance of these very small HDL was independent of activity of lecithin: cholesterol acyltransferase. It was, however, dependent on both duration of incubation and on the concentrations of the added VLDL, CETP and HL. The effects of these incubations was also assessed in terms of changes to the concentration and distribution of lipid constituents across the lipoprotein spectrum. It was found that not only did lipid transfers and HL exhibit a marked synergism in promoting a reduction in HDL particle size but also that HL, although deficient in intrinsic transfer activity, enhanced the CETP-mediated transfers of cholesteryl esters from HDL to other lipoprotein fractions.  相似文献   

20.
The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [3H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [3H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [3H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号