首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

2.
A simple procedure for the determination of cotinine, major metabolite of nicotine in urine, is described. The assay involved a liquid–liquid extraction with dichloromethane in alkaline environment. The extract was dried at ambient temperature under a gentle stream of nitrogen. The residue was dissolved in 300 μl of mobile phase and 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile phase (10–9%, v/v methanol and acetonitrile, respectively in potassium dihydrogenphosphate buffer adjusted to pH 3.4) at a flow rate of 1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 260 nm. Internal standard was 2-phenylimidazole. Sensitive and specific, this technique was performed to test urine of diabetic patients (smokers and non-smokers) admitted in an endocrinology service. Urinary cotinine seems to be a better marker of smoking status than thiocyanates.  相似文献   

3.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

4.
A simultaneous assay for droperidol and flunitrazepam by high-performance liquid chromatography has been developed and applied to blood samples collected during an acute normovolemic haemodilution under general anaesthesia. Haemodilution blood samples were stored at +4°C to be transfused, if required, to a patient during the post-surgical phase. A C18 Supelclean cartridge was used for solid-phase extraction, and the recoveries were 74% and 89%, respectively, for droperidol and flunitrazepam. Compounds were chromatographed on a C18 Novapak column at 250 nm, with a mobile phase of acetonitrile—10 mM ammonium acetate buffer (pH 6.7) (45:55, v/v). Nitrazepam was used as the internal standard. For both drugs, the assay was linear up to 500 μg/l, and the detection limits were 20 and 10 μg/l for droperidol and flunitrazepam, respectively, and their observed levels in haemodilution samples were 93 ± 82 μg/l and 76 ± 107 μg/l, respectively. Some of the values for flunitrazepam were higher than the minimal efficient concentration, defined as the plasma level observed at the time of the patient wakening from anaesthesia (12 ± 4 μg/l). According to our results, haemodilution sampling can be performed before induction of anaesthesia. When the blood is collected after the anaesthetic induction, it seems necessary to determine levels of the two drugs in haemodilution samples to avoid side-effects.  相似文献   

5.
A sensitive high-performance liquid chromatographic method using fluorescence detection has been developed for sotalol determination in small plasma samples of children and newborns with limited blood volume. In sample sizes of 100 μl of plasma, sotalol was extracted using an internal standard and solid-phase extraction columns. Chromatographic separation was performed on a Spherisorb C6 column of 150×4.6 mm I.D. and 5 μm particle size at ambient temperature. The mobile phase consisted of acetonitrile–15 mM potassium phosphate buffer (pH 3.0) (70:30, v/v). The excitation wavelength was set at 235 nm, emission at 300 nm. The flow-rate was 1 ml/min. Sotalol and the internal standard atenolol showed recoveries of 107±8.9 and 97±8.1%, respectively. The linearity range for sotalol was between 0.07 and 5.75 μg/ml, the limit of quantitation 0.09 μg/ml. Precision values expressed as percent relative standard deviation of intra-assay varied between 0.6 and 13.6%, that of inter-assay between 2.4 and 14.4%. Accuracy varied between 86.1 and 109.8% (intra-assay) and 95.4 and 103.3% (inter-assay). Other clinically used antiarrhythmic drugs did not interfere. As an application of the assay, sotalol plasma concentrations in a 6-year-old child with supraventricular tachycardia treated with oral sotalol (3.2 mg/kg per day) are reported.  相似文献   

6.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

7.
A sensitive and quantitative reversed-phase HPLC method for the analysis of -sotalol in human atria, ventricles, blood and plasma was developed. Sotalol was determined in about 100 mg of human right atria, left ventricles, and in 500 μl of blood and plasma samples of patients undergoing coronary bypass surgery or heart transplantation. Patients were taking 80–160 mg of sotalol as an antiarrhythmic agent. Atenolol was used as an internal standard certifying high precision of measurement. Sotalol blood and plasma concentrations correlated linearly to the obtained signals from 26.5 ng/ml to 2.12 μg/ml. Sotalol tissue concentrations showed linearity between 0.27 ng/mg and 10.6 ng/mg wet weight. The limit of quantitation was 0.27 ng/mg at a signal-to-noise ratio of 10. Sotalol was extracted from homogenized tissue with a buffer solution (pH 9) and the remaining pellet was extracted with methanol. The methanol extract was evaporated under nitrogen and reconstituted in buffer (pH 3). The whole extract was cleaned by solid-phase column extraction, eluted with methanol, evaporated again, reconstituted in the mobile phase (acetonitrile-15 mM potassium phosphate buffer pH 3, 17:83, v/v) and injected onto the HPLC column (Spherisorb C6 column, 5 μm,, 150×4.6 mm I.D). For the detection of sotalol, the UV wavelength was set to 230 nm. Recoveries of sotalol and atenolol in atria and ventricles were 65.6 and 75.0%, respectively. Intra- and inter-assay coefficients of variation for tissue concentrations were 3.38 and 6.14%, respectively. Intra- and inter-assay accuracy for determined tissue sotalol concentrations were 94.9±6.3 and 99.6±4.1%.  相似文献   

8.
A reversed-phase liquid chromatographic method with ultraviolet detection has been developed to determine busulfan concentrations in plasma of children undergoing bone marrow transplantation. Plasma samples (200 μl) containing busulfan and 1,6-bis(methanesulfonyloxy)hexane as an internal standard were prepared by a simple derivatization method with diethyldithiocarbamate followed by extraction with ethyl acetate and solid-phase purification on C8 columns conditioned with methanol and water and eluted with acetonitrile (recovery 99%). Chromatography was accomplished using a Hypersil octadecylsilyl column (10 cm×4.6 mm I.D.) and a mobile phase of acetonitrile, tetrahydrofuran and distilled water (65:5:30, v/v). The limit of detection was 25 ng/ml (signal-to-noise ratio of 5). Calibration curves were linear up to 25 000 ng/ml. Intra-day and inter-day coefficients of variation of the assay were ≤5%. This method was used to analyse busulfan plasma concentrations after oral administration within the framework of therapeutic drug monitoring and pharmacokinetic studies in children.  相似文献   

9.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   

10.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

11.
A simple, selective, and sensitive liquid chromatographic method with ultraviolet detection was developed for the analysis of penicillin G in bovine plasma. The assay utilizes a simple extraction of penicillin G from plasma (with a known amount of penicillin V added as internal standard) with water, dilute sulphuric acid and sodium tungstate solutions, followed by concentration on a conditioned C18 solid-phase extraction column. After elution with 500 μl of elution solution, the penicillins are derivatized with 500 μl of 1,2,4-triazole—mercuric chloride solution at 65°C for 30 min. The penicillin—mercury mercaptide complexes are separated by reversed-phase liquid chromatography on a C18 column. The method, which has a detection limit of 5 ng/ml (ppb) in bovine plasma, was used to quantitatively measure the concentrations of penicillin G in plasma of steers at a series of intervals after the intramuscular administration of a commercial formulation of procaine penicillin G.  相似文献   

12.
A 0.5-ml aliquot of a serum sample, after the addition of a 100-μl aliquot of a 5 μg/ml solution of dibucaine as the internal standard, is vortex-mixed with 0.5 ml of acetonitrile and centrifuged. The supernatant is applied to a 1-ml BondElut C18 silica extraction column conditioned with subsequent washings with 1 M HCl, methanol and water. After passing the sample at a slow rate, the column is washed twice with water and once with acetonitrile. The desired compounds are then eluted with a 0.25-ml aliquot of 35% perchloric acid—methanol (1:40, v/v). A 7-μl aliquot of the eluate is injected onto a 150 × 4.6 mm I.D. column packed with 5-μm C8 silica particles and eluted at ambient temperature with a mobile phase of 10 mM phosphate buffer-acetonitrile (2:1, v/v) (pH 3.2). The peaks are detected with a fluorescence detector (excitation at 295 nm, emission at 365 nm). The resulting chromatogram is clean with no extraneous peaks. Paroxetine and dibucaine give sharp peaks which are well separated from each other and from the solvent peaks. The extraction recovery of the drug and the internal standard is in the range of 90% which allows a highly sensitive determination of paroxetine.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) assay has been developed for the determination of the antifungal drug fluconazole in saliva and plasma of patients infected with the human immunodeficiency virus (HIV). Samples can be heated at 60°C for 30 min to inactivate the virus without loss of the analyte. The sample pretreatment involves a liquid-liquid extraction with chloroform-1-propanol (4:1, v/v). The chromatographic analysis is performed on a Lichrosorb RP-18 (5 μm) column by isocratic elution with a mobile phase of 0.01 M acetate buffer (pH 5.0)-methanol (70:30, v/v) and ultraviolet (UV) detection at 261 nm. The lower limit of is 100 ng/ml in plasma (using 500-μl samples) and 1 μg/ml in saliva (using 250-μl samples) and the method is linear up to 100 μg/ml in plasma and saliva. At a concentration of 5 μg/ml the within-day and between-day precision in plasma are 7.1 and 5.7%, respectively. In saliva the within-day and between-day precision is 10.8% (at 5 μg/ml). The methodology is now being used in pharmacokinetic studies in HIV-infected patients in our hospital.  相似文献   

14.
A simple and reproducible method for the analysis of ampicillin in human serum was developed. Serum samples were extracted using solid-phase extraction disk cartridges containing a sorbent of styrene divinyl/benzene. Extracts were separated by reversed-phase C18 high-performance liquid chromatography with UV detection at 220 nm. The mobile phase consisted of acetonitrile–10 mM NaH2PO4 (6.5:93.5, v/v). Using this extraction procedure, recovery from serum was 98.4±5.6%. The quantitation limit was 0.19 μg/ml using 0.5 ml of serum. The calibration curves from 0.19 to 9.41 μg/ml were linear with correlation coefficients of 0.999. This method is suitable for therapeutic drug monitoring of ampicillin (ABPC) after oral administration of lenampicillin hydrochloride.  相似文献   

15.
A reversed-phase high-performance liquid chromatographic assay for the simultaneous determination of phenytoin and fosphenytoin, a prodrug for phenytoin, in human plasma and plasma ultrafiltrate is described. For plasma, the method involves simple extraction of drugs with diethyl ether and evaporation of solvent, followed by injection of the reconstituted sample onto a reversed-phase C18 column. Plasma ultrafiltrate is injected directly into the HPLC column. Compounds are eluted using an ion-pair mobile phase containing 20% acetonitrile. The eluent is monitored by UV absorbance at 210 nm. The fosphenytoin standard curves are linear in the concentration range 0.4 to 400 μg/ml for plasma and 0.03 to 80 μg/ml for ultrafiltrate. Phenytoin standard curves are linear from 0.08 to 40 μg/ml for plasma and from 0.02 to 5.0 μg/ml for ultrafiltrate. No interferences with the assay procedure were found in drug-free blank plasma or plasma ultrafiltrate. Relative standard deviation for replicate plasma or ultrafiltrate samples was less than 5% at concentrations above the limit of quantitation for both within- and between-run calculations.  相似文献   

16.
A sensitive and selective high-performance liquid chromatographic method has been developed for a new anticonvulsant, fluzinamide, and three of its active metabolites. This method requires only 0.5 ml of plasma, and it involves a single extraction with a mixture of hexane—dichloromethane—butanol (55:40:5). The plasma extract is chromatographed on a 10-μm, C18 reversed-phase column and quantitated by ultraviolet absorbance at 220 nm. The concentration—response curve for all four compounds are linear from 0.05 μg/ml to at least 10 μg/ml. The extraction efficiency of this method is greater than 90%. The accuracy and precision of the method were tested by analyzing spiked unknown samples that had been randomly distributed across the concentration range. The mean concentrations found were within ± 9% of the various amounts added with a standard deviation of ± 3.5%. This method has been successfully applied to the analysis of samples obtained from fluzinamide-dosed dogs, healthy unmedicated volunteers, and patients who were at steady state with phenytoin, carbamazepine, and fluzinamide.  相似文献   

17.
The stability of the experimental anti-tumour agent pancratistatin in human plasma has been investigated. A solid-phase extraction technique and an HPLC assay with external standards have been developed and validated. Extraction was performed using C18 cartridges and HPLC, analysis was performed on a 15 cm Hypersil BDS column using isocratic elution with 13% acetonitrile and aqueous solution of 1% (w/v) acetic acid. The lower limit of quantification for pancratistatin in 5% DMF–95% water was found to be 0.58 ng/ml (±10.58%) and 2.3 ng/ml (±9.2%) following extraction from human plasma. Mean recovery of 89.4% (±4.73%) was obtained over the concentration range 0.0023–9.45 μg/ml for a five day validation study. Pancratistatin was stable at room temperature in light or dark for at least 15 days, in the refrigerator at 4°C for at least 16 days and in the freezer at −20°C or −80°C for at least 28 days. Under all conditions monitored, % recovery of pancratistatin from human plasma was greater than 95% and no evidence of degradation had occurred. There also was no loss of pancratistatin after three cycles of freezing and thawing.  相似文献   

18.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

19.
This study describes an expedient assay for the analysis of the asthma medication, montelukast sodium (Singulair, MK-0476), in human plasma samples. After a simple extraction of the plasma, the drug and internal standard, quinine bisulfate, were measured by HPLC. The chromatographic system consisted of a single pump, a refrigerated autosampler, a C8 4-μm particle size radial compression cartridge at 40°C and a fluorescence detector with the excitation and emission wavelengths set at 350 and 400 nm, respectively. The mobile phase which was delivered at 1.0 ml/min, was prepared by adding 200 ml of 0.025 M sodium acetate, pH adjusted to 4.0 with acetic acid, to 800 ml of acetonitrile, with 50 μl triethylamine. With a run time of only 10 min per sample, this assay had an overall recovery of >97% with a detection limit of 1 ng/ml. The inter- and intra-run relative standard deviations at 0.05, 0.2 and 1.0 μg/ml were all <9.2%, while the analytical recovery at the same concentrations were within 7.7% of the amount added.  相似文献   

20.
A rapid HPLC method with solid-phase extraction (SPE) clean-up for malachite green (MG) and leucomalachite green (LMG) in eel plasma was developed. MG and LMG were extracted with a buffered methanolic solution. The extract was subjected to aromatic sulphonic acid SPE. MG and LMG were eluted from the SPE column with methanol after a treatment with ammonia gas. The reconstituted eluate was analyzed on a Chromspher B column with acetonitrile-ion-pair buffer (ph 4.0) (6:4, v/v) as the mobile phase and detection at 610 nm after post column oxidation with PbO2. The average recoveries for MG and LMG over the linear range of applicability (20–2500 ng/ml) were 82±1% and 83±1%, respectively. The limits of quantification were 5.0 μg/1 for MG and 0.9 μ/1 for LMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号