首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Pre-cultivated, nodulated and non-nodulated plants of black alder (Alnus glutinosa) and sea buckthorn (Hippophaë rhamnoides ssp.rhamnoides) were grown on different N sources, with and without acidity control. Dry matter yields were lowest when plants were supplied with only NO 3 and were much greater when NH 4 + was supplied either alone or in combination with NO 3 as long as the external pH was controlled; the final yields of the N2-fixing plants were relatively low, especially withH. rhamnoides. Without acidity control, yields were greatly reduced in the presence of NH 4 + .Proton or hydroxyl-ion effluxes, calculated on the basis of plant analyses, agreed well with measured excretion values. Without pH adjustment, the total proton efflux into the external solution was greater inA. glutinosa than inH. rhamnoides.Both species, but particularlyA. glutinosa, displayed the highest nitrate reductase activity in the roots.  相似文献   

2.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

3.
Positive effects of legumes and actinorhizal plants on N-poor soils have been observed in many studies but few have been done at high latitudes, which was the location of our study. We measured N2 fixation and several indices of soil N at a site near the Arctic Circle in northern Sweden. More than 20 years ago lupine (Lupinus nootkatensis Donn) and gray alder (Alnus incana L. Moench) were planted on this degraded forest site. We measured total soil N, net N mineralization and nitrification with a buried bag technique, and fluxes of NH+ 4 and NO 3 as collected on ion exchange membranes. We also estimated N2 fixation activity of the N2-fixing plants by the natural abundance of 15N of leaves with Betula pendula Roth. as reference species. Foliar nitrogen in the N2-fixing plants was almost totally derived from N2 fixation. Plots containing N2-fixing species generally had significantly higher soil N and N availability than a control plot without N2-fixing plants. Taken together, all measurements indicated that N2-fixing plants can be used to effectively improve soil fertility at high latitudes in northern Sweden.  相似文献   

4.
Summary The purpose of this study was to investigate the phytotoxicity of nitrapyrin 2-chloro-6-(trichloromethyl)pyridine to sunflower (Helianthus annuus L.) under different N regimes and to see if N forms affect the phytotoxicity of nitrapyrin. Sunflower was grown in pot culture for 21 days and was fertilized with (NH4)2SO4, NH4NO3 and NaNO3 to provide 0, 100 and 200 ppm N and with nitrapyrin application of 0 and 20 ppm. All N-treated sunflower plants in all N regimes and regardless of titrapyrin treatment produced more root and shoot dry weights and contained a significantly higher N than untreated check. Nitrapyrin toxicity appeared as a curling of leaf margin and a tendril type of stem growth, the visible toxicity symptoms decreased in the order: (NH4)2SO4>NH4NO3>NaNO3. Furthermore nitrapyrin addition suppressed sunflower growth in each N regime, the suppressing effect being greater with (NH4)2SO4 and NH4NO3 than as with NaNO3. Although, shoot growth from plants receiving nitrapyrin was not significantly affected by any N regime, root growth of nitrapyrin-treated plants was somewhat restricted by NH4 +−N nutrition relative to NO3 −N nutrition.  相似文献   

5.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   

6.
Preference for NH4+ or NO3 nutrition by the perennial legume Sesbania sesban (L.) Merr. was assessed by supplying plants with NH4+ and NO3 alone or mixed at equal concentrations (0.5 mM) in hydroponic culture. In addition, growth responses of S. sesban to NH4+ and NO3 nutrition and the effects on root nodulation and nutrient and mineral composition of the plant tissues were evaluated in a hydroponic setup at a range of external concentration of NH4+ and NO3 (0, 0.1, 0.2, 0.5, 2 and 5 mM). Seedlings of S. sesban grew equally well when supplied with either NH4+ or NO3 alone or mixed and had high relative growth rates (RGRs) ranging between 0.19 and 0.21 d−1. When larger plants of S. sesban were supplied with NH4+ or NO3 alone, the RGRs and shoot elongation rates were not affected by the external concentration of inorganic N. At external N concentrations up to 0.5 mM nodulation occurred and contributed to the N nutrition through fixation of gaseous N2 from the atmosphere. For both NH4+ and NO3-fed plants the N concentration in the plant tissues, particularly water-extractable NO3, increased at high supply concentrations, and concentrations of mineral cations generally decreased. It is concluded that S. sesban can grow without an external inorganic N supply by fixing atmospheric N2 gas via root nodules. Also, S. sesban grows well on both NH4+ and NO3 as the external N source and the plant can tolerate relatively high concentrations of NH4+. This wide ecological amplitude concerning N nutrition makes S. sesban very useful as a N2-fixing fallow crop in N deficient areas and also a candidate species for use in constructed wetland systems for the treatment of NH4+ rich waters.  相似文献   

7.
Summary Previous investigations indicated some forage grass roots in Texas are heavily colonized with N2-fixing bacteria. The most numerous N2-fixing bacteria were in the genera Klebsiella and Enterobacter. In the present investigation inoculation experiments were conducted using 18 isolates of these bacteria to determine if a N2-fixing association could be established between the bacteria and the grassesCynodon dactylon andPanicum coloratum. Plants were grown in soil for approximately 5 months in a greenhouse and were measured periodically for dry matter, nitrogen accumulation, and acetylene reduction activity. Results of the investigation indicated that 25% of the plant-soil systems were active in acetylene reduction and the activity was high enough to indicate agronomically significant quantities of N2 were being fixed (>8kg N ha−1). However, plant systems extrapolated to fix>8 kg N ha−1 contained less nitrogen and accumulated less dry matter than plants less active in acetylene reduction. Inocula could not be re-isolated from healthy grass roots indicating that the N2-fixing activity may have not have been closely assiciated with plant roots. Future research is needed to determine factors limiting colonization of grass roots.  相似文献   

8.
Carbohydrates have a range of effects on soil, dependent on the frequency and concentration of the application. Small quantities of glucose have the effect of accelerating the removal of available N (NH4 +, NO3 ) through incorporation into the bodies of microorganisms. This reduces plant growth (Jenkinson, 1985), the rate of which depends largely on the presence of available N (Addiscott et al., 1991). However, in theory, if appropriate soil glucose concentrations are maintained, asymbiotic N2-fixation will occur, supplying extra nitrogen nutrition to plants over an extended period. Here, it is demonstrated that the use of 0.028 M glucose and an appropriate source of N2-fixing bacteria (green waste-derived compost) can result in increased grass dry matter yields of over 50% in a glasshouse experiment.  相似文献   

9.
During vegetative regrowth of Medicago sativa L., soil N, symbiotically fixed N2 and N reserves meet the nitrogen requirements for shoot regrowth. Experiments with nodulated or non-nodulated plants were carried out to investigate the changes in N flows originating from the different N sources and in xylem transport of amino acids during regrowth. Exogenous N uptake, N2 fixation and endogenous N remobilization were estimated by 15N labelling and amino acids in xylem sap were analysed. Removal of shoots resulted in great declines of exogenous N flows derived either from N2 or from NH4NO3 during the first week of regrowth, thereafter recovery increased linearly. Mineral N uptake as well as N2 fixation occurred mainly between the 10th and 18th day after removal of shoots while exogenous N assimilation in intact plants remained at a steady level. Nitrogen remobilization rates in defoliated plants increased by at least three to five-fold, especially during the first 10 days following shoot removal. Compared to control plants, contents of amino acids in xylem sap, during the first 10 days of regrowth, were reduced by about 72% and 82% in NH4NO3 grown and in N2 fixing plants, respectively. Asparagine was the main amino acid transported in xylem sap of both treated plants. Its relative contents during this period significantly decreased from 75% to 59% and from 67% to 36% respectively in non-nodulated plants and in nodulated ones. This decline was accompanied by compensatory increase in the relative contents of aspartate and glutamine.  相似文献   

10.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

11.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

12.
The addition of combined nitrogen to substrate at an appropriate rate can stimulate N2-fixation thus inreasing the efficiency of the Alnus-Frankia symbiosis. To examine how nitrogen additions can effect the peformance of different pairs of symbionts, growth and time course of N2-fixation were studied in plants supplied with NH4NO3. Two cloned ofAlnus glutinosa (L.) Gaertn., propagatedin vitro, were inoculated with two strains ofFrankia (AVP3d and ACN14a) and grown in a greenhouse. Calcined montmorillonite (TotfaiceR) was used as growth substrate. Six N treatments were made up of varied amounts of NH4NO3 supplied in one single addition shortly before inoculation. Weekly measurements of shoot height and repeated measurements of nitrogenase activity (acetylene reduction) performed on intact root systems were used to monitor the development of the symbioses. Nitrogen treatments containing from 0.10 to 0.68 mg N g−1 dry substrate stimulated N2-fixation as well as growth. The relative performance of the two clones was different according to N treatment; one clone showed a greater benefit from the nitrogen input. Our results support the recommendation that selection of symbionts according to performance should be carried out with an input of combined nitrogen. This can provide optimum conditions for the development of each pair of symbionts.  相似文献   

13.
Three-year-old Scots pine (Pinus sylvestris) trees were grown on a sandy forest soil in pots, with the objective to determine their NH4/NO3 uptake ratio and proton efflux. N was supplied in three NH4-N/NO3-N ratios, 3:1, 1:1 and 1:3, either as 15NH4+14NO3 or as 14NH4+15NO3. Total N and 15N acquisition of different plant parts were measured. Averaged over the whole tree, the NH4/NO3 uptake ratios throughout the growing season were found to be 4.2, 2.5, and 1.5 for the three application ratios, respectively. The excess cation-over-anion uptake value (Ca-Aa) appeared to be linearly related to the natural logarithm of the NH4/NO3 uptake ratio. Further, this uptake ratio was related to the NH4/NO3 ratio of the soil solution. From these relationship it was estimated that Scots pine exhibits an acidifying uptake pattern as long as the contribution of nitrate to the N nutrition is lower than 70%. Under field circumstances root uptake may cause soil acidification in the topsoil, containing the largest part of the root system, and soil alkalization in deeper soil layers.  相似文献   

14.

Background and aims

Legume species in the fynbos vegetation of the Cape Floristic Region, that fix N2 in soils with low P, may have evolved for enhanced acquisition and efficient use of P. It was hypothesized that N2-fixing and combined-N supplied (N-supplied) A. linearis, P. calyptrata and C. genistoides are adapted to low P and would be relatively unresponsive to increased P of 100 μM.

Methods

18 legume species were evaluated for their nodulation response to low P availability. The N X P interaction was then examined in A. linearis, P. calyptrata and C. genistoides reliant on either N2-fixation or 300 μM N (NH4NO3), and receiving 0.1, 1.0, 10 and 100 μM P (NaH2PO4).

Results

In the species selection experiment, A. linearis, P. calyptrata and C. genistoides, with the greatest nodule fresh weight (FW) and nodule FW to root FW ratio, were the most prolific nodulating species. In the N X P experiment, with low P supply, the biomass of N2-fixing P. calyptrata and C. genistoides was consistently greater than that of N-supplied plants. In contrast, with high P supply of 100 μM P, all N-supplied plants accumulated more biomass than the corresponding N2-fixing plants. High P-use efficiency, poor down-regulation of P uptake and P storage was evident in A. linearis and P. calyptrata.

Conclusion

The growth response to P and the significant N X P interactions indicate that N2-fixing and N-supplied plants were not adapted to low P, but rather colimited by both N and P.  相似文献   

15.
An increasing amount of evidence indicates that N can be transferred between plants. Nonetheless, a number of fundamental questions remain. A series of experiments was initiated in the field to examine N transfer between N2-fixing soybean (Glycine max [L.] Merr.) varieties and a non-nodulating soybean, and between N2-fixing peanut (Arachis hypogaea L.) or soybean and neighboring weed species. The experiments were conducted in soils with low N fertilities and used differences in N accumulation and/or 15N natural abundance to estimate N transfer. Mixtures of N2-fixing and non-nod soybean indicated that substantial inter-plant N transfer occurred. Amounts were variable, ranging from negligible levels to 48% of the N found in the non-nod at maturity. Transfer did not appear to strongly penalize the N2-fixing donor plants. But, in cases where high amounts of N were transferred, N content of donors was noticeably lowered. Differences were evident in the amount of N transferred from different N2-fixing donor genotypes. Results of experiments with N2-fixing crops and the weed species prickly sida (Sida spinosa L.) and sicklepod (Senna obtusifolia [L.] Irwin & Barneby) also indicated substantial N transfer occurred over a 60-day period, with amounts accounting for 30–80% of the N present in the weeds. Transfer of N, however, was generally very low in weed species that are known to be non-hosts for arbuscular mycorrhizae (yellow nutsedge, Cyperus esculentus L. and Palmer amaranth, Amaranthus palmeri [S.] Watson). The results are consistent with the view that N transfer occurs primarily through mycorrhizal hyphal networks, and they reveal that N transfer may be a contributing factor to weed problems in N2-fixing crops in low N fertility conditions.  相似文献   

16.
Red alder (Alnus rubra Bong.) stands in the Pacific Northwest are the common first stage in succession following disturbance. These stands are highly productive and contribute a large amount of N to the soils as a result of their N2-fixing symbiosis with Frankia. As these alder stands age, the soils not only increase in total N, but concentrations of NO 3 increase and pH decreases as a result of nitrification. The objective of this study was to determine how the nodulation capacity of Frankia varies as red alder stands age and if differences in nodulation capacity are related to changes in soil properties. Nodulation capacity was determined by a red alder seedling bioassay for soils from red alder stands in the Oregon coast range covering a wide range of ages. Six chronosequences were sampled, each containing a young, an intermediate, and an older alder stand. Soil total N, total C, NO 3, NH+ 4, and pH were measured on the same soil samples. These factors as well as alder stand characteristics were compared with nodulation capacity in an attempt to identify soil characteristics typical in developing alder stands that most strongly affect nodulation capacity. Soil pH and NO 3 concentration were highly correlated with nodulation capacity and with each other. Cluster analysis of the sites using these two variables identified two groups with distinctly different nodulation capacities. The cluster with the higher nodulation capacity was lower in NO 3 and higher in pH than the other cluster, which included the majority of sites. There was substantial overlap in the age ranges for the two clusters and there was no significant correlation between age and nodulation capacity. Thus nodulation capacity appears to be most closely related to soil properties than to stand age.  相似文献   

17.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

18.
Carbon isotope composition (δ13C) was measured in a glasshouse experiment with N2-fixing and NO3- or NH4+-fed Casuarina equisetifolia Forst. & Forst plants, both under well-watered and drought conditions. The abundance of 13C was higher (more positive δ13C) for NH4+- than for NO3 -grown plants and was lowest for N2-fixing plants. NH4+-fed plants had more leaf area and dry weight and higher water use efficiency (on a biomass basis) than N2- and NO3-grown plants and had lower water consumption than plants supplied with NO3, either with high or low water supply. Specific leaf areas and leaf area ratios were higher with NH4+ than with NO3 or N2 as the N source. The difference observed in δ13C between plants grown with different N sources was higher than that predicted by theory and was not in the right direction (NH4+-grown plants with a more negative δ13C) to be explained by differences in plant composition and engagement of the various carboxylation reactions. The more positive δ13C in NH4+- than in NO3-grown plants is probably due to a decreased ratio of stomatal to carboxylation conductances, which accounts for the lower water cost of C assimilation in NH4+-grown plants.  相似文献   

19.
Summary This study was conducted to determine the effect of short term application of NH4NO3 on nodule function and to determine whether the rhizobial isolate used was a significant factor in this effect. Pea plants were inoculated with 10 differentRhizobium leguminosarum isolates and grown for 3 weeks in N-free medium before addition of 0, 1, 2 or 5 mM NH4NO3 for 2 to 7 days. Acetylene reduction and leghemoglobin content decreased with increasing exposure time to NH4NO3 and with increasing concentration of NH4NO3. NH 4 + and NO 3 depletion from the nutrient medium were assayed in plants exposed to 5 mM NH4NO3 and mean uptake rates were similar for each ion. There were significant differences among isolates in the rate of decrease of C2H2 reduction with increasing NH4NO3 concentration (C2H2 reduction responsiveness to NH4NO3) 4 and 7 days after addition of NH4NO3 but no differences after 2 days of exposure to NH4NO3. There were significant differences among isolates in NH 4 + depletion from the nutrient medium but these differences were not correlated with the differences observed in C2H2 reduction. Ranking of the isolates for C2H2 reduction responsiveness to NH4NO3 applied to plants with nodules was different from that obtained when NH4NO3 was applied at seeding. Isolates with varying sensitivity to NH4NO3 may be useful tools for determining the mechanisms responsible for inhibition of symbiotic N2 fixation by combined nitrogen. NRCC paper no. 25863.  相似文献   

20.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号