首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of phyllosphere bacteria in the degradation of phenanthrene was investigated as a mechanism for the removal of atmospheric phenanthrene after its deposition on plant leaves. Initially, leaf samples of six plant species were collected from two roadsides in Bangkok to determine the presence of phenanthrene-degrading bacteria. The numbers of phenanthrene-degrading phyllosphere bacteria were varied and ranged from 3.5 x 10(4) to 1.95 x 10(7) CFU/g, in which the highest number was found from Ixora sp. Further studies were carried out in the laboratory by spraying phenanthrene on Ixora sp. leaves and then monitoring the amount of deposited phenanthrene and number of phenanthrene-degrading bacteria after incubation. The results showed that the amount of phenanthrene was significantly reduced on leaves containing phenanthrene-degrading bacteria. These were detected along with a rapid increase in the number of bacteria on leaves. The results indicated that many phyllosphere bacteria could utilize phenanthrene to support their growth and thereby reduce the amount of deposited phenanthrene on leaf surfaces. Several phenanthrene-degrading bacteria were later isolated from the leaves and identified with a high 16S rDNA sequence similarity to the genera Pseudomonas, Microbacterium, Rhizobium, and Deinococcus.  相似文献   

2.
一株菲降解细菌的分离鉴定及其特性   总被引:10,自引:0,他引:10  
通过选择性富集培养,从沈抚灌区石油污染土壤中分离到1株菲降解细菌.试验证明该菌株能以菲为唯一碳源和能源生长.经形态学、生理生化鉴定和16S rRNA基因序列比对分析,确定该菌株属于不动杆菌属,命名为Acinetobacter sp. L2. 系统发育进化分析发现,L2菌株与Acinetobacter sp. DG880[AY258108]亲源关系最近.L2菌株培养7 d后对菲的降解率达96.3%.邻苯二酚2,3-双加氧酶活力测定表明,L2菌株可能含有菲降解基因.  相似文献   

3.
It is known that Escherichia coli K-12 is cryptic (Phn-) for utilization of methyl phosphonate (MePn) and that Phn+ variants can be selected for growth on MePn as the sole P source. Variants arise from deletion via a possible slip strand mechanism of one of three direct 8-bp repeat sequences in phnE, which restores function to a component of a putative ABC type transporter. Here we show that Phn+ variants are present at the surprisingly high frequency of >10(-2) in K-12 strains. Amplified-fragment length polymorphism analysis was used to monitor instability in phnE in various strains growing under different conditions. This revealed that, once selection for growth on MePn is removed, Phn+ revertants reappear and accumulate at high levels through reinsertion of the 8-bp repeat element sequence. It appears that, in K-12, phnE contains a high-frequency reversible gene switch, producing phase variation which either allows ("on" form) or blocks ("off" form) MePn utilization. The switch can also block usage of other metabolizable alkyl phosphonates, including the naturally occurring 2-aminoethylphosphonate. All K-12 strains, obtained from collections, appear in the "off" form even when bearing mutations in mutS, mutD, or dnaQ which are known to enhance slip strand events between repetitive sequences. The ability to inactivate the phnE gene appears to be unique to K-12 strains since the B strain is naturally Phn+ and lacks the inactivating 8-bp insertion in phnE, as do important pathogenic strains for which genome sequences are known and also strains isolated recently from environmental sources.  相似文献   

4.
Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.  相似文献   

5.
A 25-kb DNA SalI fragment cloned from the chromosomal DNA of Pseudomonas putida OUS82, which utilizes phenanthrene (Phn+) and naphthalene (Nah+), carried all of the genes necessary for upper naphthalene catabolism. Cosmid recombinant pIP7 complemented both the Nah- and Phn- defects of OUS8211 (Trp-Nah-Phn-Sal+[salicylate utilizing]Hna+[1-hydroxy-2-naphthoate utilizing]) and only the Phn- defect of OUS8212 (Trp-Nah-Phn-Sal-Hna+). The results indicate that strain OUS82 uses different pathways after o-hydroxycarboxylic aromatics in the catabolism of naphthalene and phenanthrene.  相似文献   

6.
Nocardioides sp. strain KP7 grows on phenanthrene but not on naphthalene. This organism degrades phenanthrene via 1-hydroxy-2-naphthoate, o-phthalate, and protocatechuate. The genes responsible for the degradation of phenanthrene to o-phthalate (phd) were found by Southern hybridization to reside on the chromosome. A 10.6-kb DNA fragment containing eight phd genes was cloned and sequenced. The phdA, phdB, phdC, and phdD genes, which encode the alpha and beta subunits of the oxygenase component, a ferredoxin, and a ferredoxin reductase, respectively, of phenanthrene dioxygenase were identified. The gene cluster, phdAB, was located 8. 3 kb downstream of the previously characterized phdK gene, which encodes 2-carboxybenzaldehyde dehydrogenase. The phdCD gene cluster was located 2.9 kb downstream of the phdB gene. PhdA and PhdB exhibited moderate (less than 60%) sequence identity to the alpha and beta subunits of other ring-hydroxylating dioxygenases. The PhdC sequence showed features of a [3Fe-4S] or [4Fe-4S] type of ferredoxin, not of the [2Fe-2S] type of ferredoxin that has been found in most of the reported ring-hydroxylating dioxygenases. PhdD also showed moderate (less than 40%) sequence identity to known reductases. The phdABCD genes were expressed poorly in Escherichia coli, even when placed under the control of strong promoters. The introduction of a Shine-Dalgarno sequence upstream of each initiation codon of the phdABCD genes improved their expression in E. coli. E. coli cells carrying phdBCD or phdACD exhibited no phenanthrene-degrading activity, and those carrying phdABD or phdABC exhibited phenanthrene-degrading activity which was significantly less than that in cells carrying the phdABCD genes. It was thus concluded that all of the phdABCD genes are necessary for the efficient expression of phenanthrene-degrading activity. The genetic organization of the phd genes, the phylogenetically diverged positions of these genes, and an unusual type of ferredoxin component suggest phenanthrene dioxygenase in Nocardioides sp. strain KP7 to be a new class of aromatic ring-hydroxylating dioxygenases.  相似文献   

7.
Sphingomonas sp. strain A4 is capable of utilizing acenaphthene and acenaphthylene as sole carbon and energy sources, but it is unable to grow on other polycyclic aromatic hydrocarbons (PAHs). The genes encoding terminal oxygenase components of ring-hydroxylating dioxygenase (arhA1 and arhA2) were isolated from this strain by means of the ability to oxidize indole to indigo of the Escherichia coli clone containing electron transport proteins from phenanthrene-degrading Sphingobium sp. strain P2. The translated products of arhA1 and arhA2 exhibited moderate sequence identity (less than 56%) to large and small subunits of dioxygenase of other ring-hydroxylating dioxygenases. Biotransformation with recombinant E. coli clone revealed the broad substrate specificity of this oxygenase toward several PAHs including acenaphthene, acenaphthylene, naphthalene, phenanthrene, anthracene and fluoranthene. Southern hybridization analysis revealed the presence of a putative arhA1 homologue on a locus different from that of the arhA1 gene. Insertion inactivation of the arhA1 gene in strain A4 suggested that the gene but not the putative homologue one was involved in the degradation of acenaphthene and acenaphthylene in this strain.  相似文献   

8.
Phenanthrene degradation by Pseudomonas mendocina CGMCC 1.766, a new phenanthrene-degrading strain, was investigated in this work. When cells were grown on 20, 50, 100 and 200 mg l−1 of phenanthrene, the doubling time was 18.3, 19.8, 21.0 and 20.3 h and the growth yield during exponential phase was 242, 271, 221 and 206 mg protein (g phenanthrene)−1, respectively. High level accumulation of the intermediate metabolite 1-hydroxy-2-naphthoic acid (1H2N) up to ≈94% of its theoretical yield was observed. Dynamic profiles of the activities of two key enzymes, i.e. polycyclic aromatic hydrocarbon (PAH) dioxygenase (PDO) and catechol-2,3-oxygenase (C23O), during the biodegradation were revealed and the results suggest a delicate mechanism in the regulation of these phenanthrene-degrading enzymes in this strain.  相似文献   

9.
Plasmid vector and allelic exchange mutagenesis systems were established for the genetic analysis of a phenanthrene-degrading mycobacterial strain, Mycobacterium sp. EPa45. Successful application of these systems revealed the necessity of the EPa45 phdI gene for the degradation of 1-hydroxy-2-naphthoate, which has been proposed to be an intermediate product in the degradation pathway of phenanthrene.  相似文献   

10.
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.  相似文献   

11.
A phenanthrene-degrading bacterium, belonging to the genusMicrococcus, was isolated from petroliferous soil. The strain degraded phenanthrene mainly through protocatechuate, as was evidenced by oxygen uptake and enzymatic studies. Moreover, the strain can utilize naphthalene and anthracene without any lag, and as such catechol-2,3-oxygenase may play an important role, most probably as a constitutive enzyme. The mechanism of degradation of these hydrocarbons and other aromatic compounds seems to be controlled by an extrachromosomal mechanism (i.e., through plasmids), as was evidenced by the loss of the phenanthrene-and naphthalene-assimilating property after subculture in nutrient agar and NAH+ phenotype, in benzoate agar medium; this suggests its similarity with other hydrocarbon-assimilating microorganisms in which the degradation is mediated entirely by plasmids.  相似文献   

12.
Actin-fragmin kinase (AFK) from Physarum polycephalum specifically phosphorylates actin in the EGTA-resistant 1:1 actin-fragmin complex. The cDNA deduced amino acid sequence reveals two major domains of approximately 35 kDa each that are separated by a hinge-like proline/serine-rich segment of 50 residues. Whereas the N-terminal domain does not show any significant similarity to protein sequences from databases, there are six complete kelch repeats in the protein that comprise almost the entire C-terminal half of the molecule. To prove the intrinsic phosphorylation activity of AFK, full-length or partial cDNA fragments were expressed both in a reticulocyte lysate and in Escherichia coli. In both expression systems, we obtained specific actin phosphorylation and located the catalytic domain in the N-terminal half. Interestingly, this region did not contain any of the known protein kinase consensus sequences. The only known sequence motif present that could have been involved in nucleotide binding was a nearly perfect phosphate binding loop (P-loop). However, introduction of two different point mutations into this putative P-loop sequence did not alter the catalytic activity of the kinase, which indicates an as yet unknown mechanism for phosphate transfer. Our data suggest that AFK belongs to a new class of protein kinases and that this actin phosphorylation might be the first example of a widely distributed novel type of regulation of the actin cytoskeleton in non-muscle cells.  相似文献   

13.
Under various environmental stresses, the true slime mold Physarum polycephalum converts into dormant forms, such as microcysts, sclerotia, and spores, which can survive in adverse environments for a considerable period of time. In drought-induced sclerotia, actin is threonine phosphorylated, which blocks its ability to polymerize into filaments. It is known that fragmin and actin-fragmin kinase (AFK) mediate this phosphorylation event. In this work, we demonstrate that high levels of actin threonine phosphorylation are also found in other dormant cells, including microcysts and spores. As the threonine phosphorylation of actin in microcysts and sclerotia were induced by drought stress but not by other stresses, we suggest that drought stress is essential for actin phosphorylation in both cell types. Although characteristic filamentous actin structures (dot- or rod-like structures) were observed in microcysts, sclerotia, and spores, actin phosphorylation was not required for the formation of these structures. Prior to the formation of both microcysts and sclerotia, AFK mRNA expression was activated transiently, whereas fragmin mRNA levels decreased. Our results suggest that drought stress and AFK might be involved in the threonine phosphorylation of actin.  相似文献   

14.
We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500 μg g(-1) phenanthrene using a quantitative competitive polymerase chain reaction method. The inoculum, which was not indigenous to Forbes soil, grew from 5.55x10(5) colony forming units (cfu) g(-1) to 1.97x10(7) cfu g(-1) within 100 h after the cells were added to the soil. Maximum population density was reached before the highest degradation rate was observed 150 h after the cells were added to soil. Population density remained stable even after 56% of the phenanthrene had mineralized. This study is one of the few documented examples of growth by a non-indigenous bacterium in a non-sterile soil amended with a pollutant.  相似文献   

15.
Five sets of large and small subunits of terminal oxygenase (ahdA1[a-e] and ahdA2[a-e]) and a single gene set encoding ferredoxin (ahdA3) and ferredoxin reductase (ahdA4) were found to be scattered through 15.8- and 14-kb DNA fragments of phenanthrene-degrading Sphingobium sp. strain P2. RT-PCR analysis indicated the inducible and specific expression of ahdA3, ahdA4, and three sets of genes for terminal oxygenase (ahdA1[c-e] and ahdA2[c-e]) in this strain grown on phenanthrene. The biotransformation experiments with resting cells of Escherichia coli JM109 harboring recombinant ahd genes revealed that AhdA2cA1c, AhdA1dA2d, and AhdA1eA2e can all function as a salicylate 1-hydroxylase which converts salicylate, a metabolic intermediate of phenanthrene, to catechol in cooperation with the electron transport proteins AhdA3A4. The first two oxygenases exhibited a broad range of substrate specificities such that they also catalyzed the hydroxylation of methyl- and chloro-substituted salicylates to produce their corresponding substituted catechols.  相似文献   

16.
Bacteria that are capable of degrading polycyclic aromatic hydrocarbons were enumerated by incorporating soil and water dilutions together with fine particles of phenanthrene, a polycyclic aromatic hydrocarbon, into an agarose overlayer and pouring the mixture over a mineral salts underlayer. The phenanthrene-degrading bacteria embedded in the overlayer were recognized by a halo of clearing in the opaque phenanthrene layer. Diesel fuel- or creosote-contaminated soil and water that were undergoing bioremediation contained 6 x 10(6) to 100 x 10(6) phenanthrene-degrading bacteria per g and ca. 5 x 10(5) phenanthrene-degrading bacteria per ml, respectively, whereas samples from untreated polluted sites contained substantially lower numbers. Unpolluted soil and water contained no detectable phenanthrene degraders (desert soil) or only very modest numbers of these organisms (garden soil, municipal reservoir water).  相似文献   

17.
Bacteria that are capable of degrading polycyclic aromatic hydrocarbons were enumerated by incorporating soil and water dilutions together with fine particles of phenanthrene, a polycyclic aromatic hydrocarbon, into an agarose overlayer and pouring the mixture over a mineral salts underlayer. The phenanthrene-degrading bacteria embedded in the overlayer were recognized by a halo of clearing in the opaque phenanthrene layer. Diesel fuel- or creosote-contaminated soil and water that were undergoing bioremediation contained 6 x 10(6) to 100 x 10(6) phenanthrene-degrading bacteria per g and ca. 5 x 10(5) phenanthrene-degrading bacteria per ml, respectively, whereas samples from untreated polluted sites contained substantially lower numbers. Unpolluted soil and water contained no detectable phenanthrene degraders (desert soil) or only very modest numbers of these organisms (garden soil, municipal reservoir water).  相似文献   

18.
The catabolism of phosphonates (Phn) by Campylobacter spp. was investigated employing nuclear magnetic resonance spectroscopy and cell culture techniques. The bacteria were capable of cleaving the Phn bonds of different compounds, including -aminomethylphosphonate, phosphonoacetate and phenylphosphonate (PhePhn). The kinetic parameters of these activities were determined in vivo in intact cells and in situ in whole-cell lysates. Cleavage of Phn-bearing compounds was associated with the cell-wall and cytosolic fractions. Results from substrate competition experiments suggested that at least two enzyme activities appeared to be involved in the cleavage of carbon–phosphate (C–P) bonds. In silico analyses indicated that no genes orthologous to those encoding C–P bond-cleaving enzymes in other bacteria were present in the Campylobacter jejuni genome. In most bacteria studied, Phn catabolism is induced under conditions of phosphate limitation; however, in Campylobacter spp. these activities were expressed in cells grown in media rich in phosphate. In chemically defined media, PhePhn supported bacterial growth and proliferation at concentrations above 100 M in the absence of phosphate. Thus, Phn utilisation may be a survival mechanism of Campylobacter spp. in milieux lacking sufficient phosphate. The expression of these enzyme activities in media abundant in phosphate suggested also that they may have other physiological roles.  相似文献   

19.
Photomodification of a 302-membered single-stranded DNA fragment by 5'-mono- and 3',5'-di-N-(2-oxyethyl)phenazine (Phn) derivatives of oligonucleotides has been investigated. Under strong laser irradiation (lambda 532 nm; power density 2,5 GV/cm2, irradiation dose 30 J) the DNA fragment in the presence of Phn-reagents was significantly destructed (up to 70-95%). The level of complementary addressed modification (24-51%) is a direct function of the length of oligonucleotide address of the photoreagent and the amount of Phn residues, stabilizing the complementary complex. The character of the nonaddressed modification is close to the statistic one, although for a number of photoreagents a rather efficient nonspecific modification of 5'-terminal sequence of target DNA has been detected. Of interest also is an unusually broad positional direction of the DNA fragment photomodification in the area of perfect complementary coupling of 5'-Phn-reagents.  相似文献   

20.
A phenanthrene-degrading Mycobacterium sp. strain 6PY1 was grown in an aqueous/organic biphasic culture system with phenanthrene as sole carbon source. Its capacity of degradation was studied during sequential inoculum enrichments, reaching complete phenanthrene degradation at a maximim rate of 7 mg l−1 h−1. Water–oil emulsions and biofilm formation were observed in biphasic cultures after four successive enrichments. The factors influencing interfacial area in the emulsions were: the initial phenanthrene concentration, the initial inoculum size, and the silicone oil volume fraction. The results showed that the interfacial area was mainly dependent on the silicone oil/mineral salts medium ratio and the inoculum size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号