首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Large turves from a ryegrass/white clover based pasture wereexposed to 350 or 700 µl l-1 CO2 for a period of 217 din controlled environment rooms. The temperature was increasedduring the experiment from 10/4 °C day/night to 16/10 °Cand finally to 22/16 °C. The turves were cut to a heightof 2 cm at intervals and growth rates calculated from the regrowth. Growth rates over the duration of the experiment were 8% higherat elevated CO2; the difference between CO2 treatments beingstatistically significant only at the highest temperature. Speciescomposition of the turves at 350 µl l-1 CO2 showed seasonalchanges similar to those measured in the field. The effect ofCO2 was to exaggerate the normal decline of ryegrass at warmertemperatures and increase the proportion of white clover. About30% of the total growth rate was from other species (notablyBromus hordeaceus L. and Poa trivialis L.) and this fractionwas similar between CO2 levels. Root mass was measured at theend of the experiment and was 50% higher at elevated CO2. The modest above-ground response to CO2 was a result of CO2stimulation occurring only at the higher temperature. Becauseof the CO2 x temperature interaction, the effect of CO2 in temperateregions will be seasonal. When this is matched with seasonalgrowth patterns of herbage species, a complex response of pasturecommunities to CO2 is possible. In our case, white clover wasgrowing most strongly during the period of greatest CO2 stimulationand consequently its growth was enhanced more than that of ryegrass;however, the cooler season growth of ryegrass gives it a temporalniche which is little affected by CO2 and this may be importantfor ryegrass stability if it is an inherently poor responderto CO2. The results indicate that for temperate species theeffects of competition at elevated CO2 cannot be easily determinedfrom experiments conducted at a single temperature.Copyright1994, 1999 Academic Press CO2 enrichment, seasonal growth, species composition, turves, Trifolium repens L., Lolium perenne L., climate change  相似文献   

2.
Stands of groundnut (Arachis hypogaea L.), a C3 legume, weregrown in controlled-environment glasshouses at 28 °C (±5°C)under two levels of atmospheric CO2 (350 ppmv or 700 ppmv) andtwo levels of soil moisture (irrigated weekly or no water from35 d after sowing). Elevated CO2 increased the maximum rate of net photosynthesisby up to 40%, with an increase in conversion coefficient forintercepted radiation of 30% (from 1–66 to 2–16g MJ–1) in well-irrigated conditions, and 94% (from 0–64to 1·24 g MJ–1) on a drying soil profile. In plantswell supplied with water, elevated CO2 increased dry matteraccumulation by 16% (from 13·79 to 16·03 t –1) and pod yield by 25% (from 2·7 to 3·4t ha–1).However, the harvest index (total poddry weight/above-grounddry weight) was unaffected by CO2 treatment. The beneficial effects of elevated CO2 were enhanced under severewater stress, dry matter production increased by 112% (from4·13 to 8·87 t ha–1) and a pod yield of1·34t ha–1 was obtained in elevated CO2, whereascomparable plotsat 350 ppmv CO2 only yielded 0·22 t ha-1.There was a corresponding decrease in harvest index from 0·15to 0·05. Following the withholding of irrigation, plants growing on astored soil water profile in elevated CO2 could maintain significantlyless negative leaf water potentials (P<0·01) for theremainder of the season than comparable plants grown in ambientCO2, allowing prolonged plant activity during drought. In plants which were well supplied with water, allocation ofdry matter between leaves, stems, roots, and pods was similarin both CO2 treatments. On a drying soil profile, allocationin plants grown in 350 ppmv CO2 changed in favour of root developmentfar earlier in the season than plants grown at 700 ppmv CO2,indicating that severe waterstress was reached earlier at 350ppmv CO2. The primary effects of elevated CO2 on growth and yield of groundnutstands weremediated by an increase in the conversion coefficientfor intercepted radiation and the prolonged maintenance of higherleaf water potentials during increasing drought stress. Key words: Arachis hypogaea, elevated CO2, water stress, dry matter production  相似文献   

3.
The effects of elevated carbon dioxide (CO2 and ozone (O3) onsoybean (Glycine max (L.) Merr.] photosynthesis and photorespiration-relatedparameters were determined periodically during the growing seasonby measurements of gas exchange, photorespiratory enzyme activitiesand amino acid levels. Plants were treated in open-top fieldchambers from emergence to harvest maturity with seasonal meanconcentrations of either 364 or 726 µmol mol–1 CO2in combination with either 19 or 73 nmol mol–1 O3 (12h daily averages). On average at growth CO2 concentrations,net photosynthesis (A) increased 56% and photorespiration decreased36% in terminal mainstem leaves with CO2 enrichment. Net photosynthesisand photorespiration were suppressed 30% and 41%, respectively,by elevated O3 during late reproductive growth in the ambientCO2 treatment, but not in the elevated CO2 treatment. The ratioof photorespiration to A at growth CO2 was decreased 61% byelevated CO2 There was no statistically significant effect ofelevated O3 on the ratio of photorespiration to A. Activitiesof glycolate oxidase, hydroxypyruvate reductase and catalasewere decreased 10–25% by elevated CO2 and by 46–66%by elevated O3 at late reproductive growth. The treatments hadno significant effect on total amino acid or glycine levels,although serine concentration was lower in the elevated CO2and O3 treatments at several sampling dates. The inhibitoryeffects of elevated O3 on photorespiration-related parameterswere generally commensurate with the O3-induced decline in A.The results suggest that elevated CO2 could promote productivityboth through increased photoassimilation and suppressed photorespiration. Key words: Photorespiration, CO2-enrichment, ozone, climate change, air pollution  相似文献   

4.
Stands of spring wheat grown in open-top chambers (OTCs) wereused to assess the individual and interactive effects of season-longexposure to elevated atmospheric carbon dioxide (CO2 and ozone(O3) on the photosynthetic and gas exchange properties of leavesof differing age and position within the canopy. The observedeffects were related to estimated ozone fluxes to individualleaves. Foliar chlorophyll content was unaffected by elevatedCO2 but photosynthesis under saturating irradiances was increasedby up to 100% at 680 µmol mol–1 CO2 relative tothe ambient CO2 control; instantaneous water use efficiencywas improved by a combination of increased photosynthesis andreduced transpiration. Exposure to a seasonal mean O3 concentration(7 h d–1) of 84 nmol mol–1 under ambient CO2 acceleratedleaf senescence following full expansion, at which time chlorophyllcontent was unaffected. Stomatal regulation of pollutant uptakewas limited since estimated O3 fluxes to individual leaves werenot reduced by elevated atmospheric CO2, A common feature ofO3-treated leaves under ambient CO2 was an initial stimulationof photosynthesis and stomatal conductance for up to 4 d and10 d, respectively, after full leaf expansion, but thereafterboth variables declined rapidly. The O3-induced decline in chlorophyllcontent was less rapid under elevated CO2 and photosynthesiswas increased relative to the ambient CO2 treatment. A/Ci analysessuggested that an increase in the amount of in vivo active RuBisCOmay be involved in mitigating O3-induced damage to leaves. Theresults obtained suggest that elevated atmospheric CO2 has animportant role in restricting the damaging effects of O3 onphotosynthetic activity during the vegetative growth of springwheat, and that additional direct effects on reproductive developmentwere responsible for the substantial reductions in grain yieldobtained at final harvest, against which elevated CO2 providedlittle or no protection. Key words: Elevated CO2 and O3, gas exchange, O3 flux, stomata, chlorophyll, Triticum aestivum  相似文献   

5.
Upland grasslands are a major component of natural vegetationwithin the UK. Such grasslands support slow growing relativelystable plant communities. The response of native montane grassspecies to elevated atmospheric carbon dioxide concentrationshas received little attention to date. Of such studies, mosthave only focused on short-term (days to weeks) responses, oftenunder favourable controlled environment conditions. In thisstudy Agrostis caplllaris L.5, Festuca vivipara L. and Poa alpinaL. were grown under semi-natural conditions in outdoor open-topchambers at either ambient (340µmol mol–1) or elevated(680µmol mol–1) concentrations of atmospheric carbondioxide (CO2 for periods from 79 to 189 d, with a nutrient availabilitysimilar to that of montane Agrostis-Fescue grassland in Snowdonia,N. Wales. Whole plant dry weight was increased for A. capillarisand P. alpina, but decreased for F. vivipara, at elevated CO2.Major components of relative growth rate (RGR) contributingto this change at elevated CO2 were transient changes in specificleaf area (SLA) and leaf area ratio (LAR). Despite changes ingrowth rate at 680 µmol mol–1 CO2, partitioningof dry weight between shoot and root in plants of A. capillarisand P. alpina was unaltered. There was a significant decreasein shoot relative to root growth at elevated CO2 in F. viviparawhich also showed marked discoloration of the leaves and increasedsenescence of the foliage. Key words: Allometry, growth analysis, elevated CO2, grasses  相似文献   

6.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

7.
Agrostis capillaris L.4 Festuca vivipara L. and Poa alpinaL.were grown in outdoor open-top chambers at either ambient (340µmol mol–1) or elevated (680 µmol–1)CO2 for periods from 79 to 189 d. Under these conditions thereis increased growth of A. caplllarls and P. alpina, but reducedgrowth of F. vivipara. Nutrient use efficiency, nutrient productivity(total plant dry weight gain per unit of nutrient) and nutrientallocation of all three grass species were measured in an attemptto understand their individual growth responses further andto determine whether altered nutrient-use efficiencies and productivitiesenable plants exposed to an elevated atmospheric CO2 environmentto overcome potential limitations to growth imposed by soilfertility. Total uptake of nutrients was, in general, greater in plantsof A. capillaris and P. alpina (with the exception of N andK in the latter) when grown at 680 µmol mol–1 CO2.In F. vivipara, however, uptake was considerably reduced inplants grown at the higher CO2 concentration. Overall, a doubling of atmospheric CO2 concentration had littleeffect on the nutrient use efficiency or productivity of A.capillaris. Reductions in tissue nutrient content resulted fromincreased plant growth and not altered nutrient use efficiency.In P. alpina, potassium, magnesium and calcium productivitieswere significantly reduced and photosynthetic nitrogen and phosphorususe efficiencies were doubled at elevated CO2 with respect toplants grown at ambient CO2 F. vivipara grown for 189 d showedthe most marked changes in nutrient use efficiency and nutrientproductivity (on an extracted dry weight basis) when grown atelevated CO2, F. vivipara grown at elevated CO2 however, showedlarge increases in the ratio of non-structural carbohydrateto nitrogen content of leaves and reproductive tissues, indicatinga substantial imbalance between the production and utilizationof assimilate. Key words: Nutrient, allocation, nutrient use efficiency, grasses, nutrient productivity, elevated CO2, cliniate change  相似文献   

8.
Perennial ryegrass swards were grown in large containers ona soil, at two N fertilizer supplies and were exposed duringtwo years in highly ventilated plastic tunnels to elevated (700µl l–1 [CO2) or ambient atmospheric CO2 concentrationat outdoor temperature and to a 3C increase in air temperaturein elevated CO2. The irrigation was adjusted to obtain a soilwater deficit during summer. The daily net C assimilation wasincreased in elevated CO2 by 29 and 36% at the low and highN supplies, respectively. Canopies grown in elevated CO2 for14 to 27 months photosynthetized significantly less rapidly,in both elevated and normal CO2 concentrations, than their counterpartsdeveloped in ambient CO2 but the magnitude of this effect wassmall (–8% to –13%). Elevated CO2 resulted in alarge increase in the fructan concentration in the pseudostemsand laminae (+46% and +189%, respectively). In elevated CO2,the hexose and sucrose pool increased by 28% in the laminae,whereas it did not vary significantly in the pseudo-stems. A3C temperature increase in elevated CO2 did not affect significantlythe average WSC concentrations in the pseudostems and laminae.The elevated CO2 effects on the net C assimilation and on thenocturnal shoot respiration were greater in summer than in spring.On average, a 35% increase in the below-ground respiration wasmeasured in elevated CO2. At the high N supply, a 3C increasein air temperature led to a decline in the below-ground respirationdue to a low soil moisture. The below-ground carbon storagewas increased by 32% and 96% in elevated CO2 at the low andhigh N supplies, respectively, with no significant increasedtemperature effect. The role for the below-ground carbon storageof CO2-induced changes in the root fraction of the grass andof temperature-induced changes in the moisture content of thesoil are discussed. Key words: Climate change, grassland, gas exchange, carbohydrates, carbon cycle  相似文献   

9.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

10.
HOLE  C. C.; BARNES  A. 《Annals of botany》1980,45(3):295-307
Carbon dioxide efflux from 5- to 20-day-old pea fruits was measuredfor plants grown in controlled environment at 15 °C and600 µmol s–1 m–2 photon flux density in a16 h photoperiod. The rate of CO2 output per fruit increasedquickly from 0.005 to 0.018 mg CO2 min–1 during fruitelongation and subsequently more slowly to 0.030 mg CO2 min–1as the fruits inflated. On a d. wt basis the rate was highest,0.175 mg CO2 g–1 min–1, in the youngest fruits anddeclined curvilinearly with increasing fruit weight to 0.02mg CO2 g–1 min–1. Separation of maintenance andgrowth components was achieved by starvation methods and bymultiple regression analysis. From the latter method estimatesof the maintenance coefficient declined hyperbolically from150±8.7 mg carbohydrate g–1 d. wt day–1 inthe very young fruits (0.05 g) to 10.4±0.36 mg carbohydrateg–1 d. wt day–1 in older fruits (2.0 g). On a nitrogenbasis maintenance costs decreased from 2240 to 310 mg carbohydrateg–1 nitrogen day–1 while nitrogen concentrationfell from 6.7 to 3 per cent d. wt. A simple linear relationshipbetween maintenance cost per unit d. wt and nitrogen concentrationwas not observed. A growth coefficient of 50±6.7 mg carbohydrate g–1growth (equivalent to a conversion efficiency, YG, of 0.95)was estimated for all fruits examined. The overall efficiency, Y, increased from a mean of 0.70 to0.85 during fruit elongation and subsequently declined to 0.80.For a given fruit weight, efficiency increased asymptoticallywith relative growth rate; both asymptote and slope of the relationshipincreased as the fruits grew. Pisum sativum L., garden pea, legume fruit, carbon dioxide efflux, maintenance respiration, growth respiration  相似文献   

11.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

12.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

13.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

14.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

15.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

16.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

17.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

18.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

19.
Reducing the concentration of sucrose in the culture mediumover successive subcultures has been tested as a method forincreasing the ability of rose shoots grown in vitro (Rosa cvsIceberg and Peace) to take up CO2. Shoots maintained on ‘constant’10, 20 and 40 g I–1 sucrose showed decreased levels ofCO2 uptake at higher sucrose concentrations, although cv. Peacegrew least at 10 g l–1 and showed correspondingly lowamounts of CO2 uptake compared with 20 and 40 g l–1. Bothcultivars died when sucrose was omitted from the medium. Assucrose concentration was reduced in the medium, so CO2 uptakeof shoots initially cultured on 20 and 40 g l–1 sucrosewas found to increase, although a concentration of 10 gl –1sucrose seemed to be limiting, below which the growth and chlorophylllevels of shoots declined. Rosa hybrid, rose, shoot culture in vitro, photosynthetic ability, sucrose, infra-red gas analysis  相似文献   

20.
An improved and fast version of a closed loop system for measuringnet CO2 exchange rates (NCER) in the field using a portableinfrared gas analyser (IRGA) is described. An electronic timer-differentiatordevice measures and displays very accurately the time periodnecessary to bridge over a constant and preselected CO2 concentrationdifference. The time required for each measurement from startof the measurement to display of final results is c. 9 s forNCER of 24 µmol m–2 s–1 The measurement interval is sufficiently short that no environmentalcontrol in the perspex mini-cuvette is needed. Some satisfactorydata of NCER measurements obtained under field and glasshouseconditions on poplar, sugar bcct and winter wheat are presented. Key words: Infrared gas analysis, mobile gas exchange unit, photosynthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号