首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The complexation of Al3+, Zn2+, Cd2+ and Pb2+ by the 3-hydroxyflavones: 3-hydroxy-2-(2-methoxyphenyl)-4H-1-benzopyran-4-one (H1) and 3-hydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one (H2), and by the 3-methoxythioflavone: 3-hydroxy-2-(2-methoxyphenyl)-4H-1-benzopyran-4-thione (H3) have been studied spectrophotometrically and fluorimetrically to determine the corresponding complexation constants, Ksp and Kfl, in 5:95 water:ethanol (v/v) solution for which [HClO4] was either 10−2 or 10−5 mol dm−3 and I = 0.10 mol dm−3 (NaClO4) at 298.2 K. Complexation occurs dominantly through the deprotonated ligand for [Al(1)]2+ and [Al(2)]2+ for which log Ksp = 4.51 and 4.73, respectively, in 10−2 mol dm−3 HClO4 and 4.21 and 4.61 in 10−5 mol dm−3 HClO4. For Pb2+ complexation by H1, H2 and H3 is characterized by log Ksp = 2.20, 2.57 and 3.22, respectively, in 10−2 mol dm−3 HClO4 and 4.70, 5.38 and 5.74 in 10−5 mol dm−3 HClO4. Equilibrium mixtures of [Pb(H1)]2+ and [Pb1]+, [Pb(H2)]2+ and [Pb2]+, and [Pb(H3)]2+ and [Pb3]+ appear to be formed. Complexation of Zn2+ and Cd2+ by all three ligands was only detected in 10−5 mol dm−3 HClO4. For Zn2+ complexation by H1, H2 and H3 log Ksp = 3.22, 3.74 and 4.46 and for Cd2+ the corresponding values are 2.39, 2.40 and 3.72 for Cd2+. Only [Al1]2+ and [Al2]2+ show significant fluorescence and are characterized by log Kfl = 6.30 and 7.49 in 10−2 mol dm−3 HClO4.  相似文献   

2.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

3.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

4.
Based on the complex ligand (CuL H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclotetradeca-7,13-diene), which includes macrocyclic oxamido bridge, three trinuclear complexes were prepared. They are of the formula [(CuL)2M(ClO4)2] (M = Co(1), Ni(2)) and [(CuL)2Zn(CH3OH)2] · (ClO4)2 (3). The crystal structures of the three complexes have been determined and the M(II) of the three complexes all exist on the mirror plane. Complex 1 is the first Cu-Co complex bridged by oxamido. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −28.12 cm−1 for 1, J = −42.88 cm−1 for 2, and J = −2.13 cm−1 for 3.  相似文献   

5.
Three new ion-pair complexes, [4RBzDMAP]2[Cu(mnt)2] (mnt2− = maleonitriledithiolate; [4RBzDMAP]+ = 1-(4′-R-benzyl)-4-dimethylaminopyridinium, R = F(1), Cl(2) and Br(3)) were synthesized and characterized by elemental analyses, IR, UV, single crystal X-ray diffraction and magnetic measurements. The [Cu(mnt)2]2− anions and the cations stack alternately and form a 1D column via C-H···S, C-H···π or C-H···Cu interactions for 1 and 2. While the cations stack into a column though π···π or C-H···π interactions between pyridine and phenyl rings for 1 and 3. The change of the molecular topology of the counteraction when the 4-substituted group in the benzyl ring have been changed from F or Cl to Br atom, results in the difference in the crystal system, space group and the stacking mode of the cations and anions of 1, 2 and 3. Some weak hydrogen bonds between the adjacent columns further generate a 3D network structure. It is interesting that 1 and 2 exhibits antiferromagnetic coupling with θ = −2.372 K and θ = −14.732 K, while 3 shows weak ferromagnetic coupling feature with θ = 0.381 K.  相似文献   

6.
(ML)2(bipy) complexes (LH2 = thiosemicarbazone of 2-hydroxybenzaldehyde, bipy = 4,4′-bipyridine, M = Ni(II), 1, or Cu(II), 2) were synthesized and characterized by X-ray crystallography. Compound 1 possessed porous structure due to peculiarities of crystal packing, whereas 2 formed infinite zig-zag chains with dense non-porous packing. It was shown that 1 absorbed 0.013 cm3/g of methanol vapor in two steps. Complex 1 was diamagnetic; for 2, the dependency of χ versus T could be interpreted by Bleaney-Bowers expression in 20-300 K temperature range (J = −6.8 cm−1, g = 2.07).  相似文献   

7.
Dinuclear nickel(II) complexes [Ni2(bomp)(MeCO2)2]BPh4 (1) and [Ni2(bomp)(PhCO2)2]BPh4 (2) were synthesized with the dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. X-Ray analysis revealed that the complex 1 · 0.5CHCl3 contains two nickel(II) ions bridged by phenolic oxygen and two acetate groups, forming a μ-phenoxo-bis(μ-acetato)dinickel(II) core. Electronic spectra were investigated for 1 and 2 in the range of 400-1800 nm, and the data were typical for the octahedral high-spin nickel(II) complexes. Obtained spectral components were well simulated based on the angular overlap model assuming the trigonally distorted octahedral geometry. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 4.5-300 K. The optimized magnetic data were J = 1.75 cm−1, zJ′ = −0.234 cm−1, g = 2.21, D = 15.1 cm−1, and TIP = 370 × 10−6 cm−1 for complex 1 and J = 3.55 cm−1, zJ′ = −0.238 cm−1, g = 2.23, D = 21.8 cm−1, and TIP = 470 × 10−6 cm−1 for complex 2. The data revealed ferromagnetic interactions between the two nickel(II) ions.  相似文献   

8.
The cobalt(II) complexes [Co(TPA)Cl]ClO4 (1), [Co(TPA)Br]ClO4 (2), [Co(TPA)(H2O)]Cl(ClO4) (3) and [Co2(TPA)2(μ-tp)](ClO4)2 · 2H2O (4) (TPA = tris(2-methylpyridyl)amine and tp = terephthalate dianion) were synthesized and structurally characterized by UV-vis and IR spectroscopy. The molecular structures of complexes 1 and 4 were determined by X-ray crystallography and their magnetic properties were measured over the temperature range 2-300 K. The coordination geometry around the central Co(II) in these compounds has a distorted trigonal bipyamidal geometry with four nitrogen atoms from the TPA ligand and the fifth coordination site is occupied by Cl ion in 1, Br ion in 2, coordinated oxygen atom from H2O in 3 and by an oxygen atom supplied by the carboxylate group of the bridged terephthalato ligand in 4. The visible spectra of the complexes 1-3 in MeOH show strong distortion toward tetrahedral geometry. For complex 4, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(monodentate) coordination mode for the bridged tp. X-ray data for 1 and 4 show that the former is mononuclear while the latter is dinuclear. The electronic spectrum of 4 in MeOH is in complete agreement with the assigned X-ray geometry around the Co(II) centers. The magnetic behavior of the mononuclear complex 1 is indicative of a high-spin compound with zero-field splitting. The best fit was obtained with ∣D∣ = 7.3 cm−1, g = 2.25. The dinuclear complex 4 exhibits weak antiferromagnetic coupling with a coupling constant J = −0.8 cm−1. The magnetic properties and the structural parameters of 4 are discussed in relation to the other related μ-terephthalato dinuclear Co(II) compounds. The geometry of the coordination sphere around 4 is unique - the CSD compilation listing only one other compound with such a geometry around the dinuclear Co(II) complex and its composition is far different from that in 4. However, they share a common feature of having a weakly antiferromagnetic coupling between Co(II) centers.  相似文献   

9.
Two new mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(nabo)] M = Ni (4), Cu (5), with nabo = 2,3-naphthalene-bis(oxamato) have been synthesized as precursors for trinuclear oxamato-bridged transition metal complexes. Starting from 5 the homo-trinuclear complex [Cu3(nabo)(pmdta)2(BF4)](BF4) · MeCN · Et2O (7), with pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, has been prepared. The central N,N′-2,3-naphthalene bridge of 7 is so far the most extended π-conjugated bridge of trinuclear bis(oxamato) type transition metal complexes. The goal of this work was to verify the N,N′-2,3-naphthalene bridge of 7 on its magnetic properties in comparison to the N,N′-o-phenylene bridge of the related homo-trinuclear complex [Cu3(opba)(pmdta)2(NO3)](NO3) · 2MeCN (6) (opba = o-phenylene-bis(oxamato)). The crystal structures of 4-7 were solved. The magnetic properties of 6 and 7 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, values of −89 cm−1 (6) and −113 cm−1 (7) were obtained. The different J values are discussed based on the crystal structures of 6 and 7.  相似文献   

10.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

11.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

12.
[M(TPA)Cl]ClO4·nH2O complexes (1: M = CoII, n = 0; 2: M = CuII, n = ½; 3: M = ZnII, n = 0) where TPA = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized. The molecular structure of [Cu(TPA)Cl]ClO4·½H2O was determined by single crystal X-ray crystallography. In aqueous solution, the complex ions [M(TPA)Cl]+ (M = CoII or CuII) are hydrolyzed to the corresponding aqua species [M(TPA)(H2O)]2+. In contrast to the TBP [Cu(TPA)(H2O)]2+, the corresponding TBP cobalt(II) species showed severe distortion towards tetrahedral geometry. The interactions of the three complexes with DNA have been investigated at pH 7.0 (1.0 mM Tris-Cl buffer) and 37 °C. Significant DNA cleavages were obtained for complexes 1 and 2, whereas complex 3 did not show any detectable cleavage for DNA. Under pseudo Michaelis-Menten kinetic conditions, the kinetic parameters kcat and KM were determined as kcat = 6.59 h−1 and KM = 2.20 × 10−4 M for 1 and the corresponding parameters for 2 are kcat = 5.7 × 10−2 h−1 and KM = 6.9 × 10−5 M, and the reactivity of the complexes in promoting the cleavage of DNA decreases in the order 1 > 2 ? 3. The rate enhancements for the DNA cleavage by 1 and 2 correspond to 1.8 × 108 and 1.6 × 106, respectively, over the non-catalyzed DNA. The reactivity of the two complexes was discussed in relation to other related artificial nucleases.  相似文献   

13.
Three ZnII complexes containing bispicam ligands (bispicam = bis(2-pyridylmethyl)amine), [Zn(bispicam)2](NO3)2·2CH3OH 4A, [Zn(bispicam)(NO3)2] 4B, and [Zn(bispicam)2](OTf)26, were obtained, and their structures were determined by X-ray crystallography. Complexes of the general formulation [Zn(bispicam)2]X2 (X = Cl (1), Br (2), I (3), NO3 (4A), ClO4 (5), and OTf (6)) show fac geometric isomers (a) or enantiomers (c) and (d) according to anions. Moreover, complexes 4-6 could carry out the catalytic transesterification of a range of esters with methanol under the mild conditions. Importantly, the catalyst 4B with an unsaturated structure has shown better efficiency than the catalysts, 4A, 5, and 6, having saturated structures. To explain this reactivity difference, two different reaction mechanisms have been proposed (metal-based vs. amide N-H-based).  相似文献   

14.
By changing the substituents on 1,2,4-triazole ring, six novel organic-inorganic hybrid complexes constructed from tetranuclear copper(I) 1,2,4-triazolate clusters and octamolybdates, [{Cu4(L)x}Mo8O26] (L = 3,5-diamino-1,2,4-triazole (datrz) and x = 4 for 1; L = 3-amino-1,2,4-triazole (3atrz) and x = 4 for 2; L = 3,5-dimethyl-1,2,4-triazole (dmtrz) and x = 4 for 3; L = 3,5-dimethyl-4-amino-1,2,4-triazole (dmatrz) and x = 6 for 4; L = 3,5-diethyl-4-amino-1,2,4-triazole (deatrz) and x = 4 for 5; L = 3,5-di(n-propyl)-4-amino-1,2,4-triazole (dpatrz) and x = 3 for 6), were obtained. The tetranuclear Cu(I) cluster in compound 1 acts as charge-compensating unit, which is the first polynuclear metal 1,2,4-triazole structure only with N1, N2 bridging mode. Compounds 2, 4, 5 and 6 are of polymeric 1D chains and 3 is of a 2D layer structure. In 2, three distinct Cu(I)-coordination geometries, distorted tetrahedral, T-shaped and V-shaped linear Cu(I), are observed in the same structure. The first extended hybrid structure constructed by δ-octamolybdates is founded in 4. A novel [Mo8O26]4− anion is found in 5, which contains only three crystallographically independent Mo atoms. In compounds 5 and 6, terminal oxo groups of octamolybdate cluster act as μ3-oxo bridges to link the copper(I) coordination complexes; such an unusual linking manner is unique in the coordination chemistry of octamolybdates with transition metal fragments. The influences of substituent on the structures of the tetranuclear units are also discussed in details.  相似文献   

15.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

16.
The synthesis of iron(II), cobalt(II) and nickel(II) complexes supported by chelating borate ligands containing one pyrazole and two thioethers, phenyl(pyrazolyl)bis((alkylthio)methyl)borates, [Ph(pz)BtR], is described. The six-coordinate complexes [Ph(pz)Bt]2M, M = Fe (1Fe), Co (1Co) and Ni (1Ni), form exclusively the cis isomers as confirmed by X-ray diffraction analyses. Whereas 1Co and 1Ni are high spin, 1Fe exhibits a room temperature magnetic moment, μeff = 4.1 μB, consistent with spin-crossover behavior. Quantitative analysis of the electronic spectrum of 2Ni leads to a value of Dq = 1086 cm−1, reflective of a ligand field strength somewhat weaker than those imposed by the related tridentate borate ligands Tp or PhTt. Replacement of the methylthioether substituent with the sterically more demanding tert-butylthioether leads to the isolation of [Ph(pz)BttBu]MX, M = Co, X = Cl (2Co); M = Ni, X = Cl (2Ni) or acac (3). The solid state structures of 2Co and 2Ni are chloride-bridged dimers. Additional high-spin cobalt(II) complexes, accessible under distinct preparative conditions, [κ2-Ph(pzH)BttBu] CoCl2·THF (4) and [κ2-Ph(pz)BttBu]2Co (5), have been fully characterized.  相似文献   

17.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

18.
Three new coordination compounds, [Ni(Pht)(Py)2(H2O)3] (1), [Ni(Pht)(β- Pic)2(H2O)3] · H2O (2) and [Ni(Pht)(1-MeIm)2(H2O)3] (3) (where Pht2− = dianion of o-phthalic acid; Py = pyridine, β-Pic = 3-methylpyridine, 1-MeIm = 1-methylimidazole), have been synthesized and characterized by IR spectroscopy and thermogravimetric analysis. Crystallographic studies 1-3 reveal that each Ni(II) center has a distorted octahedral geometry being coordinated by two nitrogen atoms of aromatic amines, one oxygen atom from a carboxylate group of a phthalate ligand and three water molecules. Pht2− anions act as monodentate ligands, while the remaining uncoordinated carboxylate oxygen atoms participate in the formation of hydrogen bonding. The uncoordinated oxygen atoms form hydrogen bonds with the coordinated water molecules from adjacent complexes creating a centrosymmetric dimer unit. Further, these dimer units are connected by O-H?O hydrogen bonds in double-chains. Depending on the nature of aromatic amines, the arrangement of these double-chains differs. The double-chains are held together only by van der Waals interactions in 1. In contrast, in 2 these chains form layers by π-π interactions between antiparallel molecules of β-Pic as well as by π-π interactions between β-Pic and Pht aromatic rings. In complex 3, the double-chains are knitted together via C-H?O hydrogen bonds between the methyl group of 1-MeIm and the coordinated carboxylate oxygen atom of Pht, as well as π-π contacts involving antiparallel 1-MeIm cycles. The thermal dependence of the magnetic susceptibilities for compounds 1 and 2 shows a weak antiferromagnetic interaction between the two Ni2+ ions of the hydrogen bonded dimers. For compound 3, a ferromagnetic interaction could be observed. Modeling the experimental data with MAGPACK resulted in: g = 2.22, |D| = 4.11 cm−1 and J = −0.29 cm−1 for compound 1, g = 2.215, |D| = 3.85 cm−1 and J = −0.1 cm−1 for compound 2 and g = 2.23, |D| = 4.6 cm−1 and J = 0.22 cm−1 for compound 3.  相似文献   

19.
The linkage isomers, (OC)5M[κ1-PPh2 CH2CH(PPh2)2] 1 and (OC)5M[κ1-PPh2 CH(PPh2)CH2PPh2] 2 (M = Cr, Mo and W) exist in equilibrium at room temperature. Equilibrium constants for 1Cr ? 2Cr, 1Mo ? 2Mo and 1W ? 2W at 25 °C in CDCl3 are 2.61, 5.0 and 4.74, respectively. Enthalpy favors the forward reaction (ΔH = −13.5, −12 and −12.2 kJ mol−1, respectively) while entropy favors the reverse reaction (ΔS = −37.6, −28 and −28.2 J K−1 mol−1, respectively). Isomerization is much faster than chelation with 1Mo ? 2Mo ? 1W ? 2W > 1Cr ? 2Cr. Enthalpies of activation for 1Cr ? 2Cr and 1W ? 2W are 119.0 and 92.6 kJ mol−1, respectively, and entropies of activation are 1.4 and −28.2 J K−1 mol−1, respectively. Isomerization is 104 times faster for these complexes than for (OC)5M[κ1-PPh2CH2CH2P(p-tolyl)2]. A novel mechanism is proposed to account for the rate differences. The X-ray crystal structure of 2W shows that the phosphorus atom of the short phosphine arm lies very close to a carbon atom of the W(CO)4 equatorial plane (3.40 Å) which could allow “through-space” coupling, accounting in part for the observation of long-range JPC and JPW coupling. The X-ray structure of (OC)5W[κ1-PPh2 C(CH2)PPh2] 5W has been determined for comparison to 2W.  相似文献   

20.
The syntheses and comparative studies of the spectral, voltammetry and spectroelectrochemical properties of new manganese phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral positions (complex 3b) are reported. Solution electrochemistry of complex 3a showed quasi-reversible metal-based (MnIIIPc−2/MnIIPc2, E1/2 = −0.07 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.78 V vs. Ag|AgCl) reductions, but no ring-based oxidation. However, complex 3b showed weak irreversible ring-oxidation signal (Ep = +0.86 vs. Ag|AgCl). Reversible metal-based (MnIIIPc−2/MnIIPc−2, E1/2 = −0.04 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.68 V vs. Ag|AgCl) reductions were also observed for complex 3b. Spectroelectrochemistry was used to confirm these processes. Reduction process involving the metal (MnIIIPc−2/MnIIPc−2) was associated with the formation of manganese μ-oxo complex in complex 3a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号