首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The body condition, lipid reserves and mortality of 0 and 1 year‐old perch Perca fluviatilis and ruffe Gymnocephalus cernuus , sampled during the winter in Lake Constance, Germany, were compared. Length‐frequency analyses did not provide evidence for overwinter mortality in either species. The fresh and dry mass of perch as well as their lipid contents decreased during winter, while ruffe were heavier and contained more lipid at the end of the winter. The superior performance of ruffe was mainly attributed to its sensory capabilities, which allowed it to ingest zoobenthos throughout the winter, while the zooplankton feeding of perch was constrained by low light levels. In lakes that undergo a process of re‐oligotrophication, this advantage of ruffe over perch may be even more pronounced, since lower food supply during the growth season and thus lower fish lipid content at the start of winter is probably better tolerated by ruffe than by perch.  相似文献   

2.
Though a great deal of research focuses on the range expansion and presence of adult zebra mussels, there is still a need to understand the processes of larval settlement and how that relates to adult populations. There is evidence that marine bivalves preferentially settle on filamentous substrates such as hydroid colonies and algae; however, similar studies are rare in freshwater systems. We examined the importance of filamentous substrate for the settlement of the zebra mussel (Dreissena polymorpha) larvae by deploying PVC settlement plates with and without polypropylene filaments in the Bark River for a 6-week period. Larval supply was monitored weekly. Our results suggest that artificial filaments facilitated recruitment, primarily by increasing surface area available for attachment. Mussels on artificial filaments were significantly smaller in size than mussels attached to filamentous or control plate surfaces, providing some evidence that mussels may detach from filamentous substrate after initial settlement. This study adds to our general understanding about the role of filamentous substrates in the process of larval settlement and suggests that substrates colonized by filamentous epibionts may face increased risk of fouling by zebra mussels. An erratum to this article is available at .  相似文献   

3.
Mihuc  Timothy B.  Battle  Juliann M.  Mihuc  Janet R.  Bryan  C. Fred 《Hydrobiologia》1999,392(2):121-128
Zebra mussel (Dreissena polymorpha) seasonal colonization patterns, growth and habitat preferences were determined in a sub-tropical floodplain river at the southern edge of its distribution in North America during 1995–96 (Atchafalaya River Basin, Louisiana). Zebra mussel movement into subtropical areas represents a major frontier for this species worldwide. The onset of adult zebra mussel colonies occurred when the minimum daily temperature dropped below 31 °C and dissolved oxygen levels rose above 6.5 mg l-1 in the fall. By mid-winter, mussel populations were established at lateral distances >10 km from the main river channel. Mussel growth occurred throughout the winter with an increase in growth in April and May. Adult mortality occurred during May–August as dissolved oxygen levels declined and minimum daily temperature warmed above 29 °C in the floodplain and 32.5 °C in riverine sites. Limiting factors responsible for the seasonal pattern include temperature and dissolved oxygen tolerances experienced during summer months in the ARB. Summer water conditions apparently preclude establishment of resident zebra mussel populations in the Atchafalaya floodplain. Naturally occurring seasonal patterns in temperature and dissolved oxygen in floodplain rivers may have implications for the expansion of this exotic mollusk in warmwater systems with source colonies restricted to mainstem rivers and seasonal sinks in floodplain regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Synopsis The effects of temperature on capture rate, handling time, capture probability and routine swimming performance were studied in two fish species, perch Perca fluviatilis and ruffe Gymnocephalus cernuus. In addition, the reaction distance (RD) of both species was measured. Handling time decreased and capture rate increased with increasing temperature for both perch and ruffe. The response of handling time and capture rate to temperature was more pronounced for perch than for ruffe. Routine swimming performance increased with increasing temperature for perch but not significantly so for ruffe. The laboratory study showed that the foraging ability of ruffe was less sensitive to temperature than it was for perch. These results were consistent with the vertical distributions of both species in thermally stratified lakes; ruffe, which occurred at all depths, utilized a wider temperature range than perch.  相似文献   

5.
SYNOPSIS. Unlike other freshwater bivalves that survive formonths in deionized water, Dreissena polymorpha requires minimalconcentrations of Na, K, Mg, and Cl in the bathing medium forlong-term survival. Although ion transport rates are higherin D. polymorpha compared to other freshwater bivalves, theytend to have lower blood solute concentrations. D. polymorphahas an unusually "leaky" epithelium with a high paracellularpermeability to solutes. Thus, even with high transport rates,it may not be possible for zebra mussels to retain higher bloodsolutes because of the extensive passive loss of ions. Undera hyperosmotic stress, D. polymorpha will rapidly osmoconform(about 12 hr) due primarily to the diffusion of solutes andpartially to the osmotic loss of water. D. polymorpha is notcapable of surviving an imbalance of Na/K in the external medium.In the absence of K the cells will tend to lose volume to achieveisosmotic balance with the blood, but the animals usually diewithin a few days. If D. polymorpha is exposed to excess K inthe environment (1 mM), they will accumulate K in the blood.If the K enters the cells, cellular volume would expand dueto increase in osmolyte concentration, yet, if K remains inthe blood, there will be an electrochemical imbalance. In eithercase, the animal cannot survive much longer than a day. WhenNa and K are present in the medium in a balanced combinationapproximated by artificial seawater (ASW), D. polymorpha willsurvive an acute transfer to 100 mosm ASW indefinitely (months).Our preliminary studies have shown that D. polymorpha will toleratestep-wise acclimation to solutions >250 mosm provided thechanges in salinity do not exceed 50–100 mosm. Freshwaterbivalves, unlike the marine bivalves, have limited free aminoacids in their body fluids and must rely on inorganic ions forosmotic regulation. The free amino acids serve as an importantosmolyte buffer for volume regulation when an animal experiencesan environment of changing salinity. The inability of Dreissena,and perhaps other freshwater bivalves, to tolerate hyperosmoticallyinduced dehydration may be due, in part, to the inability toaccumulate or retain sufficient intracellular K to facilitateregulatory volume adjustments.  相似文献   

6.
The growth, reproduction and condition of adults of the three dominant fish species (roach, Rutilus rutilus, (L.); perch, Perca fluviatilis, L. and ruffe, Gymnocephalus cernuus, (L.)) in the eutrophic Lake Aydat were studied over one year cycle. Compared to published data, the growth of R. rutilus and G. cernuus was about average, while that of P. fluviatilis was below average. Comparing to literature, the fecundity of R. rutilus and G. cernuus was low but their oocytes were large. In contrast, P. fluviatilis had a high fecundity but small oocytes. At the end of summer, an abrupt decrease in the condition was recorded only for perch, probably due to stress as a result of environmental conditions. The sex-ratio was in favour of females for the three studied species but, in contrast to G. cernuus, the sex-ratio of R. rutilus and P. fluviatilis increased significantly also with age. It is concluded that Lake Aydat is a more favourable environment for R. rutilus and G. cernuus than for P. fluviatilis.  相似文献   

7.
In the Modrac Reservoir, loaded with coal separation suspended material, rapid development of the zebra mussel (Dreissena polymorpha) took place from at least 1987. It is probably the first distinguished “infection” for this part of Balkan Peninsula, caused by this organism. Horizontal and vertical distribution of this mussel, at 15 different reservoir profiles, had been investigated.  相似文献   

8.
Dreissena polymorpha recruitment on artificial substrates was studied in the Włocławek Dam Reservoir (the Vistula River, Poland). Densities on downstream and upstream vertical surfaces of plastic plates differed significantly from each other, with the former settled by more individuals. Vertical and horizontal plates, as well as upper and lower horizontal surfaces were settled similarly. In another experiment mussels settled on flat, convex and concave glass surfaces, directed upstream or downstream. Among the upstream surfaces, the concave ones were the most densely settled. No significant differences in mussel recruitment on various downstream surfaces were found. Thus, substrate shape influenced mussels only when they were exposed to water flow. Mussels were aggregated (Lloyd index > 1) along all the edges of the horizontal plates and along the upper edge of the vertical ones. Such distribution was probably caused by the post‐settlement movement of metamorphosed individuals. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
  1. Freshwater mussels are in decline worldwide, with the depressed river mussel Pseudanodonta complanata being one of the rarest and most endangered species in Europe. Invasive mussels are suspected to be an important factor of decline, but there is little information on their interaction with native species.
  2. This study analyzed densities, depth distribution, and individual sizes and weights in one of the largest known populations of P. complanata in Europe in relation to the co‐occurring invasive zebra mussel Dreissena polymorpha and other mussel species, using a systematic transect analysis.
  3. Pseudanodonta complanata was the dominant unionid species in Lake Siecino reaching densities of up to 26 ind/m2, with half of the specimens found at a water depth of 2.0–4.0 m. Densities were highest on sandy substrates in areas of underwater currents. In contrast, 67% of native Unio tumidus were found at depths < 1 m, indicating different habitat preference.
  4. In the study area, 91% of P. complanata, 92% of U. tumidus, and all Anodonta individuals were fouled by D. polymorpha. The dreissenid:unionid mass ratio (mean ± SD; maximum) was 0.43 ± 0.56; 4.22 and 0.86 ± 1.87; 8.76 in P. complanata and U. tumidus, respectively. Pseudanodonta complanata fouled with D. polymorpha were impaired in their anchoring capability and had shell deformations potentially affecting shell closing and filtration activity. Fouling intensity was negatively correlated with unionid density, potentially leading to accelerated population declines.
  5. The observed adverse effects of invasive zebra mussels on the depressed river mussel and the difficulties in eradicating established populations of invasive mussels suggest that D. polymorpha should be considered a serious threat to P. complanata. Therefore, the further spread of zebra mussels into habitats with native unionids needs to be avoided by all means.
  相似文献   

10.
1. The outcome of interspecific competition for food resources depends both on the competitors’ sensory abilities and on environmental conditions. In laboratory experiments we tested the influence of daylight and darkness on feeding behaviour and specific growth rate (SGR) of two species with different sensory abilities. 2. We used perch (Perca fluviatilis) as a visually orientated, and ruffe (Gymnocephalus cernuus) as a mechano‐sensory oriented predator and tested their growth rates and behaviour under conditions of interspecific and intraspecific competition. Three different foraging conditions were used: food supplied (i) only during the day, (ii) only during the night or (iii) during both day and night. 3. In perch neither SGR nor feeding behaviour were influenced substantially by interspecific competition during daylight. During darkness their foraging behaviour changed markedly and their access to the food source as well as their SGR were negatively affected by the presence of ruffe. 4. Ruffe's foraging behaviour did not change during either day or night with interspecific competition. During the night ruffe's SGR was higher with interspecific competition, probably because of a release from intraspecific competition and the competitive inferiority of perch during the night. 5. Because of its seonsory abilities ruffe feeds predominantly at night, thereby reducing competitive interference from perch.  相似文献   

11.
12.
SUMMARY 1. The feeding behaviour of the zebra mussel ( Dreissena polymorpha ) was studied in the laboratory on different combinations of food, including a green alga ( Chlamydomonas reinhardtii ) and toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa .
2. The highest clearance rate of phytoplankton by zebra mussels was found when the mussels were feeding on a mixture of Chlamydomonas and non-toxic Microcystis , the lowest on a mixture of Chlamydomonas and toxic Microcystis .
3. The differences found in the clearance rates between food combinations can be partly explained by the production of pseudofaeces containing live phytoplankton cells. Zebra mussels expelled significantly more live phytoplankton cells in the presence of toxic Microcystis than in the presence of non-toxic Microcystis . The pseudofaeces contained predominantly live Chlamydomonas cells. Proportionately much less live Microcystis cells were encountered in the pseudofaeces.
4. Consequently, grazing of zebra mussels on a combination of Chlamydomonas and Microcystis may finally result in a dominance of Chlamydomonas over Microcystis . The presence of toxic Microcystis may even strengthen this shift.  相似文献   

13.
Dionisio Pires  L.M.  Kusserow  R.  Van Donk  E. 《Hydrobiologia》2003,491(1-3):193-200
Grazing and survival of larvae of the zebra mussel, Dreissena polymorpha, on a green alga and cyanobacteria were studied in laboratory experiments. Clearance rates of the larvae were determined for Chlamydomonas reinhardtii (green alga), two non-toxic and two toxic Microcystis aeruginosa strains (Cyanobacteria). Clearance rates of larvae on non-toxic Microcystis were significantly higher than on toxic Microcystis. The clearance rate on Chlamydomonas reinhardtii was in between the clearance rates on toxic and non-toxic Microcystis strains and not significantly different from them. Effects of toxicity of Microcystis on the survival of zebra mussel larvae was investigated in a short-term experiment. Survival of larvae fed toxic Microcystis was lower than that of larvae fed non-toxic Microcystis, but higher than that of starved larvae. This may imply that, for survival of zebra mussel larvae, it is better to have bad quality (toxic) food than no food.  相似文献   

14.
15.
1. We predicted that zebra mussel, Dreissena polymorpha (Pallas), genetic structure in the Mississippi River would follow a model of invasive species genetics, which predicts low genetic structure among populations of recently established species. This prediction was upheld in our previous genetic study using allozymes, however, one locus yielded anomalous results. 2. We employed amplified fragment length polymorphism (AFLP) analysis as a neutral marker to assess the amount of genetic structure within and among populations, and as a test of expected population structure from both invasion genetic theory, and the results from our previous study. 3. There was greater spatial differentiation, as measured by Fst, observed using AFLP's than for allozymes (P < 0.001). There was no evidence that AFLP variation conformed to an isolation by distance model, and genetic relationships of populations, as measured by AFLP markers, were not similar to those detected in our allozyme survey. 4. The lack of concordance between these two genetic marker systems probably reflects their differential responses to drift, migration, and selection occurring during this rapid invasion. Strong population structure is counter to predictions that populations of invasive species will not be differentiated, as with observations based on allozyme markers. Therefore, newly established species may require genetic surveys using multiple marker systems to evaluate population structure.  相似文献   

16.
An important issue in the management of zebra mussel (Dreissena polymorpha) populations is early, rapid, and accurate detection of the planktonic larvae (veliger) of the zebra mussel. The goal of this study was to explore the feasibility of developing a molecular approach for the detection of zebra mussel larvae in diverse environments. In this study a Dreissena polymorpha-specific 18S ribosomal RNA gene targeted oligonucleotide primer (ZEB-715a) and Polymerase Chain Reaction (PCR) assay was developed and compared with cross-polarized microscopy as a means to detect zebra mussel veligers in plankton samples. The design of the zebra mussel-specific primer was facilitated by sequencing nearly the complete 18S rRNA gene from the zebra mussel and three other closely related freshwater Veneroids including the quagga mussel (D. bugensis), the dark false mussel (Mytilopsis leucophaeata), and the Asian freshwater clam (Corbicula fluminea). The specificity of the primer for the zebra mussel was empirically tested by using the primer as a direct probe in a blot hybridization format. A single veliger in a plankton sample could be detected by PCR using this approach. Veliger detection sensitivity using the PCR approach was estimated to be over 300 times more sensitive than cross-polarized light microscopy based techniques. Cross-polarized light microscopy and the PCR technique were used to identify the presence of zebra mussel larvae in plankton samples that were collected from a variety of natural and industrial water sources. Detection results (presence or absence) were generally consistent between the two methods. Although additional studies will be required before routine application of molecular based veliger detection technology is available, a long-term goal of this work is the application of molecular technology to the development of a field device for the routine detection and quantification of zebra mussel veligers.  相似文献   

17.
The invasion of the freshwaters of Belarus by the zebra mussel, Dreissena polymorpha (Pallas), began at least 200 years ago by the opening of shipping canals linking the Black Sea and Baltic Sea drainage basins. However, zebra mussels have invaded only 93 (16.8%) of 553 studied lakes; at least 20 of these lakes were invaded within in the past 30 years. Zebra mussels were found disproportionately in lakes that were mesotrophic, larger, and had some commercial fishing. Although larger lakes have more intensive fisheries with larger catches, the intensity of the fishery and average catch did not affect the probability of zebra mussel invasion. Zebra mussels were not found in dystrophic lakes (10% of the lakes studied), probably due to their low pH and calcium content. Zebra mussels became locally extinct in one lake due to anthropogenic eutrophication and pollution. Many ecologically suitable lakes have yet to be invaded, which suggests that natural vectors of overland dispersal, e.g., waterfowl, have been ineffective in Belarus. Thus, future spread of this species will continue to depend on human activities such as commercial fishing.  相似文献   

18.
John T. Morse 《Biofouling》2013,29(7):605-610
Dreissenid mussel (Dreissena polymorpha, Dreissena rostriformis bugensis) expansion into the Western US has renewed interest in hot-water spray mitigation of mussel fouling on boat hulls, trailers, and other equipment. However, the efficacy of hot-water sprays to mitigate dreissenid fouling has not been experimentally assessed. Emersed, adult D. polymorpha were exposed to low-pressure, hot-water sprays at 40, 50, 60, 70, and 80°C for 1, 5, or 10 s. Sprays at ≥60°C for 10 s or 80°C at ≥5 s were 100% lethal. In contrast, 1–10 s exposures did not induce 100% mortality at ≤50°C. The results indicate that mitigation of D. polymorpha fouling, especially in areas protected from the hydraulic impacts of high-pressure sprays requires spray temperatures of > 80°C applied for >5 s or no less than 60°C applied for >10 s. Thus, presently recommended spray temperatures of ≥60°C may not be 100% effective unless applied for >10 s.  相似文献   

19.
Xiong L H  Lu J J  Tong C F  He W S 《农业工程》2007,27(6):2160-2166
In winter, Common Kestrel minimizes energy expenditure by using the low-cost, low-profit technique of perch hunting. Existence of the perch sites is the precondition of perch hunting. Therefore, one can predict that the kestrels would prefer a habitat with more perch sites, and perch sites should have an important role in the kestrels' hunting technique use, habitat selection and habitat use in winter. To test this prediction, the authors manipulated two areas in a grassland. They increased the potential perch sites in one area with bamboo poles (hereafter test area) and kept another as control (hereafter control area). They observed and compared the kestrels' use and their behaviors in these two areas. Far more kestrels appearing in the test area with increasing perch sites than in the control area were recorded. The kestrels stayed in the test area with more perch sites significantly longer than in the control area. And in the test area with more perch sites, kestrels hunted 77.24% of the total hunting with the technique of perch hunting. In the control area, kestrels hunted only with the technique of flight-hunting. There was a significant correlation between the technique used by kestrels and the areas with or without perch sites. In the test area with increasing perch sites kestrels spent 51.8% of their time in perching and 12.1% in air, which were 30.1% and 34.8%, respectively, in the control area. There was no significant difference in hunting profit between areas. The results suggest that perch sites play an important role in the selection of hunting technique and foraging habitat for kestrels in winter, and kestrels appear to prefer the habitat with suitable perch sites in winter.  相似文献   

20.
Abstract

Macrofouling of aquatic man-made structures by zebra mussels (Dreissena polymorpha) poses significant economic burdens on commercial freshwater shipping and facilities utilising raw water. The negative environmental impact of some current antifouling technologies has limited their use and prompted investigation of non-organometallic and non-oxidising antifoulants as possible environment-friendly alternatives. The plant-derived natural product capsaicin and 18 other compounds with one or more capsaicin-like structural features were tested for their potential to inhibit zebra mussel byssal attachment at a single high concentration of 30 μM. Of these, three compounds displaying the highest levels of attachment inhibition where selected for further concentration-response testing. This testing revealed that capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), N-vanillylnonanamide, and N-benzoylmonoethanolamine benzoate all inhibited byssal attachment with potency values (EC50) in the micromolar range. None of these compounds were lethal to adult specimens of the water flea, Daphnia magna, at concentrations that inhibited mussel byssal attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号