首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyadenylated mRNA was purified from the aleurone cells of Cyamopsis tetragonoloba (guar) seeds germinated for 18 h and used for the construction of a cDNA library. Clones with the -galactosidase encoding gene were identified using oligo-nucleotide mixed probes based on the NH2 terminal amino acid sequence and on the sequence of an internal peptide. The nucleotide sequence of the cDNA clone showed that the enzyme is synthesized as a precursor with a 47 amino acid NH2 terminal extension. This pre-sequence most likely functions to target the protein outside the aleurone cells into the endosperm. Based upon structural features, it is proposed to divide the precursor into a pre-(signal sequence) part and a glycosylated pro-part comparable with those of the yeast mat A/ factor and killer factor. A comparison of the derived amino acid sequence of this -galactosidase from plant origin revealed significant stretches of homology with respect to the amino acid sequences of the enzymes from Saccharomyces cerevisiae and from human origin but only to a minor extent compared with the -galactosidase from Escherichia coli.  相似文献   

2.
Summary A cDNA encoding -ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned fromCuphea lanceolata. This cDNA of 1276 by codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp -ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the -ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, -ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced inEscherichia coli, was isolated and proved to possess -ketoacyl-ACP reductase activity. Hybridization studies revealed that inC. lanceolata -ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.  相似文献   

3.
4.
A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library prepared from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 M [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.  相似文献   

5.
6.
7.
We have isolated a cDNA clone from rat brain using a human platelet 2-adrenergic receptor genomic clone as a probe. Comparison of the deduced amino acid sequence (450 residues) corresponding to the rat brain cDNA with that of the human platelet and human kidney 2-adrenergic receptors showed 84% and 44% sequence similarity, respectively. The major sequence difference between the rat brain and human platelet proteins, was a stretch of 48 amino acids within the third cytosolic loop in which the similarity was only 42%. Analysis of the 48 amino acid-region indicated that the two receptors significantly differ in terms of their primary amino acid sequence and the predicted secondary and tertiary structural features. There was no sequence similarity between the human platelet and rat brain clone over the 177 bases of 3-noncoding sequence and a less than 50% similarity over a stretch of 210 nucleotides in the 5-untranslated region. Southern-blot analysis with a human platelet 2-adrenergic receptor probe revealed the existence of a single 5.2 kb restriction fragment (KpnI/SacI) in both human and rat genomic DNA; the rat brain 2-receptor probe, however, hybridized to a single 1.9 kb band in rat DNA. Northern-blot analysis of rat brain poly(A+) RNA with the rat brain cDNA probe under stringent hybridization conditions revealed a single 4.5 kb mRNA; none was detected by the human platelet receptor probe. The rat brain 4.5 kb mRNA was not detected in any (other than brain) tested rat tissues utilizing either rat brain or human platelet DNA probes. The rat brain cDNA was expressed in a mammalian cell line (COS-2A) and found to bind the 2-adrenergic antagonist [3H]yohimbine; based on the binding-affinity for prazosin, the presently cloned receptor was pharmacologically closer to the 2A subclass. We conclude that the rat brain cDNA encodes a new 2-adrenergic receptor subtype that may be brain-specific.Abbreviations G protein guanine nucleotide-binding proteins - cA2-47 2-adrenergic receptor cDNA from rat brain - SSC (1X SSC contains 0.15 M NaCl, 15 mM Na3citrate, pH 7.0)  相似文献   

8.
Type 2A serine/threonine protein phosphatases (PP2A) are key components in the regulation of signal transduction and control of cell metabolism. The activity of these protein phosphatases is modulated by regulatory subunits. While PP2A activity has been characterized in plants, little is known about its regulation. We used the polymerase chain reaction to amplify a segment of a cDNA encoding the B regulatory subunit of PP2A from Arabidopsis. The amplified DNA fragment of 372 nucleotides was used as a probe to screen an Arabidopsis cDNA library and a full-length clone (AtB) of 2.1 kbp was isolated. The predicted protein encoded by AtB is 43 to 46% identical and 53 to 56% similar to its yeast and mammalian counterparts, and contains three unique regions of amino acid insertions not present in the animal B regulatory subunit. Genomic Southern blots indicate the Arabidopsis genome contains at least two genes encoding the B regulatory subunit. In addition, other plant species also contain DNA sequences homologous to the B regulatory subunit, indicating that regulation of PP2A activity by the 55 kDa B regulatory subunit is probably ubiquitous in plants. Northern blots indicate the AtB mRNA accumulates in all Arabidopsis tissues examined, suggesting the protein product of the AtB gene performs a basic housekeeping function in plant cells.  相似文献   

9.
Summary In vitro culture of inflorescence tissue of a Triticum crassum (6x) x Hordeum vulgare cv. Bomi (2x) intergeneric hybrid resulted in the proliferation of totipotent callus from which plants were regenerated. Regeneration was also achieved from immature inflorescence callus of T. crassum but not from H. vulgare. T. crassum x H. vulgare regenerates had a somatic chromosome number of 28, identical to that of the original hybrid. Four chimeric plants with a partially doubled chromosome number were obtained by in vitro colchicine treatment of hybrid callus prior to induction of plant regeneration. All T. crassum regenerates had 35 chromosomes rather than the expected number of 42. Meiotic analysis of a 35-chromosome plant revealed an extremely abnormal meiosis which might be attributable to a complete disturbance in meiotic control system(s) including that of meiotic pairing.Dedicated to Professor Georg Melchers on the occasion of his 75th birthday.Contribution No. 624 Ottawa Research Station, Research Branch, Agriculture Canada, Ottawa, Ont. K1A OC6 (Canada)  相似文献   

10.
The Li locus in white clover controls the presence of cyanogenic -glucosidase (linamarase) activity in leaf tissue, such that plants homozygous for the null allele (li) have no linamarase activity in this tissue. The isolation of a cDNA clone from linamarase mRNA is described. The cDNA clone is used to further characterise alleles of the Li locus. Northern blot analysis shows that plants homozygous for the null allele (li li) produce very reduced levels of mRNA which hybridises to the cDNA. Heterozygous plants (Li li), which have intermediate levels of enzyme activity, produce intermediate levels of mRNA. Southern blot analysis of Hind III digested genomic DNA shows that the white clover genome contains three genes with homology to the linamarase cDNA and that at least two of these genes segregate independently. Analysis of the cosegregation of linamarase activity and the presence of genomic restriction fragments identifies the genomic sequence specifying linamarase structure and indicates either a structural or cis acting control function of the Li locus.  相似文献   

11.
We isolated a cDNA clone from a pistil cDNA library of Petunia inflata which encodes a protein, PPT, with sequence similarity to -thionins. Characterization of a genomic clone containing a PPT gene revealed the presence of a single intron. Northern analysis revealed that the PPT gene was predominantly expressed in the pistil during all stages of flower development. Since thionins have been implicated in plant defense against pathogens, PPT may play a role similar to that of other defense-related proteins found in the pistil, defending the pistil against pathogen infection.  相似文献   

12.
K+ channel proteins native to animal membranes have been shown to be composed of two different types of polypeptides: the pore-forming subunit and the subunit which may be involved in either modulation of conductance through the channel, or stabilization and surface expression of the channel complex. Several cDNAs encoding animal K+ channel subunits have been recently cloned and sequenced. We report the molecular cloning of a rice plant homolog of these animal subunits. The rice cDNA (KOB1) described in this report encodes a 36 kDa polypeptide which shares 45% sequence identity with these animal K+ channel subunits, and 72% identity with the only other cloned plant (Arabidopsis thaliana) K+ channel subunit (KAB1). The KOB1 translation product was demonstrated to form a tight physical association with a plant K+ channel subunit. These results are consistent with the conclusion that the KOB1 cDNA encodes a K+ channel subunit.Expression studies indicated that KOB1 protein is more abundant in leaves than in either reproductive structures or roots. Later-developing leaves on a rice plant were found to contain increasing levels of the protein with the flag leaf having the highest titer of KOB1. Leaf sheaths are known to accumulate excess K+ and act as reserve sources of this cation when new growth requires remobilization of K+. Leaf sheaths were found to contain higher levels of KOB1 protein than the blade portions of leaves. It was further determined that when K+ was lost from older leaves of plants grown on K+-deficient fertilizer, the loss of cellular K+ was associated with a decline in both KOB1 mRNA and protein. This finding represents the first demonstration (in either plants or animals) that changes in cellular K+ status may specifically alter expression of a gene encoding a K+ channel subunit.  相似文献   

13.
Enzymatic O-methylation of plant secondary metabolites is an important mechanism for the inactivation of reactive hydroxyl groups and for the modification of their solubility. A cDNA clone (pFOMT3) encoding the gene for the 3/5-O-methylation of partially methylated flavonols was isolated from Chrysosplenium americanum (Saxifragaceae). We used a PCR fragment obtained with degenerate oligonucleotides designed from conserved regions of various O-methyltransferases (OMTs). The pFOMT3 cDNA sequence shows about 67–85% similarity to other plant OMT sequences. The recombinant protein expresses strict specificity for positions 3/5 (meta) of partially methylated flavonols, but does not accept quercetin or caffeic acid for further methylation. Southern blot analysis of the genomic DNA probed with an OMT sequence suggests the presence of a number of related genes in this species, consistent with the multiple enzymatic methylations involved in the biosynthesis of polymethylated flavonols in this plant.  相似文献   

14.
We have isolated cDNA clones representing mRNAs encoding chitinase and 1,3--glucanase in cotton (Gossypium hirsutum L.) leaves. The chitinase clones were sequenced and found to encode a 28,806 Da protein with 71% amino acid sequence similarity to the SK2 chitinase from potato (Solanum tuberosum). The 1,3--glucanase clones encoded a 37,645 Da protein with 57.6% identity to a 1,3--glucanase from soybean (Glycine max). Northern blot analyses showed that chitinase mRNA is induced in plants treated with ethaphon or salicylic acid, whereas the levels of 1,3--glucanase mRNA are relatively unaffected. Southern blots of cotton genomic DNA and genomic clones indicated chitinase is encoded by a small gene family of which two members, Chi 2;1 and Chi 2;2, were characterized. These genes share 97% sequence identity in their transcribed regions. The genes were found to have three exons which are 309, 154 and 550 bp long, and two introns 99 and 154 bp in length. The 5-flanking regions of Chi 2;1 and Chi 2;2 exhibit a large degree of similarity and may contain sequences important for gene response to chemical agents and fungal attack.  相似文献   

15.
A cDNA (zmEF1A) and the corresponding genomic clone (zmgEF1A) of a member of the gene family encoding the subunit of translation elongation factor 1 (EF-1) have been isolated from maize. The deduced amino acid sequence is 447 residues long interrupted by one intron. Southern blot analysis reveals that the cloned EF-1 gene is one member out of a family consisting of at least six genes. As shown by northern hybridizations in leaves the mRNA level increases at low temperature whereas time-course experiments over 24 h at 5°C show that in roots the overall mRNA level of EF-1 is transiently decreased. These results indicate that the expression of EF-1 is differently regulated in leaves and roots under cold stress.  相似文献   

16.
Fu RH  Wang AY  Wang YC  Sung HY 《Biotechnology letters》2003,25(18):1525-1530
A vacuolar type -d-fructofuranosidase (Osfruct3) was cloned from etiolated rice seedlings cDNA library. It encodes an open reading frame of 688 residues. The deduced amino acid sequence had 58% identity to the vacuolar type -d-fructofuranosidase of maize (Ivr1). Osfruct3 exists as a single copy per genome. Northern analyses showed that Osfruct3 undergoes organ-specific expression and is involved in the adjustment of plant responses to environmental signals and metabolizable sugars. Osfruct3 was also heterologously expressed in Pichia pastoris. The recombinant proteins were confirmed to be a vacuolar type -d-fructofuranosidase.  相似文献   

17.
C2H2 zinc finger protein genes encode nucleic acid-binding proteins involved in the regulation of gene activity. AtZFP1 (Arabidopsis thaliana zinc finger protein 1) is one member of a small family of C2H2 zinc finger-encoding sequences previously characterized from Arabidopsis. The genomic sequence corresponding to the AtZFP1 cDNA has been determined. Molecular analysis demonstrates that AtZFP1 is a unique, intronless gene which encodes a 1100 nucleotides mRNA highly expressed in roots and stems. A construct in which 2.5 kb of AtZFP1 upstream sequences is linked to the -glucuronidase gene was introduced into Arabidopsis by Agrobacterium-mediated transformation of roots. Histochemical analysis of transgenic Arabidopsis carrying the AtZFP1 promotor:-glucuronidase fusion shows good correlation with RNA blot hybridization analysis. This transgenic line will be a useful tool for analyzing the regulation of AtZFP1 to further our understanding of its function.  相似文献   

18.
We investigated the evolutionary history of the divergent vertebrate linker histones H10, H5, and HIM. We observed that the sequence of the central conserved domain of these vertebrate proteins shares characteristic features with histone H1 proteins of plants and invertebrate animals which otherwise never appear in any vertebrate histone H1 protein. A quantitative analysis of 58 linker histone sequences also reveals that these proteins are more similar to invertebrate and plant histone H1 than to histone H1 of vertebrates. A phylogenetic tree deduced from an alignment of the central domain of all known linker histones places H10, H5, and HIM in close vicinity to invertebrate sperm histone H1 proteins and to invertebrate histone H1 proteins encoded by polyadenylated mRNAs. We therefore conclude that the ancestors of the vertebrate linker histones H10, H5, and HIM diverged from the main group of histone H1 proteins before the vertebrate type of histone H1 was established in evolution. We discuss this observation in the general context of linker histone evolution. Correspondence to: B. and E. Schulze  相似文献   

19.
A 14.5 kDa barley endosperm protein that is a major allergen in baker's asthma disease, as previously shown by both in vitro (IgE binding) and in vivo tests, has been identified as a glycosylated monomeric member of the multigene family of inhibitors of -amylase/trypsin from cereals. A cDNA encoding this allergen (renamed BMAI-1) has been isolated and characterized. The deduced sequence for the mature protein, which is 132 residues long, is identical in its N-terminal end to the 20 amino acid partial sequence previously determined from the purified allergen, and fully confirms that it is a member of the multigene family of cereal inhibitors. Southern-blot analysis of wheat/barley addition lines using the insert in the BMAI-1 cDNA clone as a probe, has led to the location of the allergen gene (Iam1) in barley chromosome 2, while another related member of this protein family, the barley dimeric -amylase inhibitor BDAI-1 gene (Iad1) has been located in chromosome 6. Iam1 is the first member of this inhibitor family in cereals to be assigned to chromosome group 2, thus extending the dispersion of genes in the family to five out of the seven homology groups of chromosomes in wheat and barley (chromosome 2, 3, 4, 6 and 7).  相似文献   

20.
-N-oxalyl-l-,-diaminopropionic acid (l-ODAP) toxicity has been associated with lathyrism; a spastic paraparesis caused by excessive dietary intake of the pulse Lathyrus sativus. We investigated the effect of Lathyrus neurotoxin l-ODAP on protein kinase C (PKC) activity under in vitro conditions. l-ODAP activated phosphorylation activity of purified chick brain PKC. Both lysine-rich (histone III-S) and arginine-rich (protamine sulfate) substrate phosphorylation was enhanced in the presence of l-ODAP. The activation is concentration dependent, and maximal activation is observed at 100 M concentration. Protamine sulfate phosphorylation was enhanced by 47%, whereas histone III-S phosphorylation was enhanced by 50% over PS/PDBu/Ca2+ dependent activity. The nontoxic d-isomer (d-ODAP) did not affect both histone III-S and protamine sulfate phosphorylation activity. These results indicate that l-ODAP taken up by neuronal cells could also contribute to PKC activation and so be associated with toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号