首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
《Genomics》2020,112(1):581-591
Previous studies to resolve phylogenetic and taxonomic discrepancies of Hibiscus remained inconclusive. Here, we report chloroplast genome sequence of Hibiscus rosa-sinensis. Hibiscus rosa-sinensis chloroplast genome was 160,951 bp, comprising of large single copy (89,509 bp) and small single copy (20,246 bp) regions, separated by IRa and IRb (25,598 bp each). The genome contained 130 genes including 85 protein-coding genes, 37 transfer RNAs and 8 ribosomal RNAs. Comparative analyses of chloroplast genomes revealed similar structure among 12 species within family Malvaceae. Evolutionary rates of 77 protein-coding genes showed 95% similarities. Analyses of codon usage, amino acid frequency, putative RNA editing sites, and repeats showed a great extent of similarities between Hibiscus rosa-sinensis and Hibiscus syriacus. We identified 30 mutational hotpots including psbZ-trnG, trnK-rps16, trnD-trnY, trnW-trnP, rpl33-rps18, petG-trnW, trnS-trnG, trnH-psbA, atpB-rbcL, and rpl32-trnL that might be used as polymorphic and robust markers to resolve phylogenetic discrepancies in genus Hibiscus.  相似文献   

2.

Background

Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing.

Methodology/Principal Findings

The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons.

Conclusion

The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny studies within Artemisia species and also within the Asteraceae family.  相似文献   

3.
《Genomics》2020,112(3):2349-2360
Aroideae is the largest and most diverse subfamily of the plant family Araceae. Despite its agricultural and horticultural importance, the genomic resources are sparse for this subfamily. Here, we report de novo assembled and fully annotated chloroplast genomes of 13 Aroideae species. The quadripartite chloroplast genomes (size range of 158,177–170,037 bp) are comprised of a large single copy (LSC; 75,594–94,702 bp), a small single copy (SSC; 12,903–23,981 bp) and a pair of inverted repeats (IRs; 25,266–34,840 bp). Notable gene rearrangements and IRs contraction / expansions were found for Anchomanes hookeri and Zantedeschia aethiopica. Codon usage, amino acid frequencies, oligonucleotide repeats, GC contents, and gene features revealed similarities among the 13 species. The number of oligonucleotide repeats was uncorrelated with genome size or phylogenetic position of the species. Phylogenetic analyses corroborated the monophyly of Aroideae but were unable to resolve the positions of Calla and Schismatoglottis.  相似文献   

4.
Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.  相似文献   

5.
6.
Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex. The discovery of tandem repeats within T. tetragonolobum and the presence of divergent regions between chloroplast genomes of Lamiales provides the basis for the development of markers at various taxonomic levels. The newly developed markers have the potential to greatly improve the resolution of molecular phylogenies.  相似文献   

7.
Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.  相似文献   

8.
The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.  相似文献   

9.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

10.
The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a potential medicinal plant, will contribute to research on the genetic applications of this genus.  相似文献   

11.
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.  相似文献   

12.
李娟  童家赟  范智超  童毅 《广西植物》2023,43(11):2008-2023
为确定桃叶珊瑚属(Aucuba)植物叶绿体基因组的结构及其序列变异,揭示其属下种间亲缘关系,该研究对桃叶珊瑚(A. chinensis)、花叶青木(A. japonica var. variegata)等6种桃叶珊瑚属植物和丝缨花属植物黄杨叶丝缨花(Garrya buxifolia)进行二代测序,利用生物信息学软件对其叶绿体基因组序列进行组装和注释,并进行基本特征分析、序列比较以及系统发育分析。结果表明:(1)桃叶珊瑚属植物叶绿体基因组具典型的环状四分体结构,6条序列全长157 891~158 325 bp,均编码114个基因,包括80个蛋白质编码基因、30个tRNA基因和4个rRNA基因。(2)6种植物叶绿体基因组高频密码子数均为29个,偏好以A/U结尾,确定了这6条序列的最优密码子共100个,包含12个共有的最优密码子。(3)6条叶绿体基因组序列共检测到270条散在重复序列,133条串联重复序列以及412个SSR位点。(4)比较基因组学分析结果表明,该属植物叶绿体基因组序列高度保守。(5)从叶绿体基因组中筛选出10个高变片段。(6)系统发育分析结果显示支持桃叶珊瑚属为一个支持率较高的单系,与丝缨花属关系较近。该研究中的5种桃叶珊瑚属植物以及1种丝缨花属植物的叶绿体基因组均为首次测序组装,揭示了桃叶珊瑚属及其属下种间的系统发育关系,为桃叶珊瑚属植物的分类鉴定和系统发育提供了参考资料。  相似文献   

13.
The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.  相似文献   

14.
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.  相似文献   

15.
16.
Sporadic rains in the Atacama Desert reveal a high biodiversity of plant species that only occur there. One of these rare species is the “Red añañuca” (Zephyranthes phycelloides), formerly known as Rhodophiala phycelloides. Many species of Zephyranthes in the Atacama Desert are dangerously threatened, due to massive extraction of bulbs and cutting of flowers. Therefore, studies of the biodiversity of these endemic species, which are essential for their conservation, should be conducted sooner rather than later. There are some chloroplast genomes available for Amaryllidaceae species, however there is no complete chloroplast genome available for any of the species of Zephyranthes subgenus Myostemma. The aim of the present work was to characterize and analyze the chloroplast of Z. phycelloides by NGS sequencing. The chloroplast genome of the Z. phycelloides consists of 158,107 bp, with typical quadripartite structures: a large single copy (LSC, 86,129 bp), a small single copy (SSC, 18,352 bp), and two inverted repeats (IR, 26,813 bp). One hundred thirty-seven genes were identified: 87 coding genes, 8 rRNA, 38 tRNA and 4 pseudogenes. The number of SSRs was 64 in Z. phycelloides and a total of 43 repeats were detected. The phylogenetic analysis of Z. phycelloides shows a distinct subclade with respect to Z. mesochloa. The average nucleotide variability (Pi) between Z. phycelloides and Z. mesochloa was of 0.02000, and seven loci with high variability were identified: psbA, trnSGCU-trnGUCC, trnDGUC-trnYGUA, trnLUAA-trnFGAA, rbcL, psbE-petL and ndhG-ndhI. The differences between the species are furthermore confirmed by the high amount of SNPs between these two species. Here, we report for the first time the complete cp genome of one species of the Zephyranthes subgenus Myostemma, which can be used for phylogenetic and population genomic studies.  相似文献   

17.
Continuous exploratory use of tree species is threatening the existence of several plants in South America. One of these threatened species is Myracroduron urundeuva, highly exploited due to the high quality and durability of its wood. The chloroplast (cp) has been used for several evolutionary studies as well traceability of timber origin, based on its gene sequences and simple sequence repeats (SSR) variability. Cp genome organization is usually consisting of a large single copy and a small single copy region separated by two inverted repeats regions. We sequenced the complete cp genome from M. urundeuva based on Illumina next-generation sequencing. Our results show that the cp genome is 159,883 bp in size. The 36 SSR identified ranging from mono- to hexanucleotides. Positive selection analysis revealed nine genes related to photosystem, protein synthesis, and DNA replication, and protease are under positive selection. Genome comparison a other Anacardiaceae chloroplast genomes showed great variability in the family. The phylogenetic analysis using complete chloroplast genome sequences of other Anacardiaceae family members showed a close relationship with two other economically important genera, Pistacia and Rhus. These results will help future investigations of timber monitoring and population and evolutionary studies. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00989-1.  相似文献   

18.
Only a few studies to date have conducted comparative genomics in the Myrtaceae family. Here, we report the complete sequence and bioinformatics analysis of the chloroplast genome of Syzygium cumini (L.), one of the family members. The size of S. cumini cp genome was within the range of reported angiosperm chloroplast genomes. Comparison of S. cumini cpDNA sequence with previously reported partial sequences of S. cumini revealed several SNPs that resulted in non-synonymous mutations in maturase K and NADH-plastoquinone oxidoreductase subunit-5. These polymorphic characters might serve as intra-specific markers to address whether lineage sorting from polymorphic ancestry has occurred. Comparison of the S. cumini chloroplast genome with related dicots revealed an expansion in the intergenic spacer located between IRA/large single copy (LSC) border and the first gene of LSC region, driven by sequence of 54 bp. This type of variation in the intergenic regions can be utilized in the development of species-specific vectors for chloroplast genetic engineering. Several of the longer (30–40 bp) repeats were found to be conserved in other dicot species, suggesting that they might be widespread in angiosperm chloroplast genomes.  相似文献   

19.
赵渊祥  梁大曲  谢双琴  王好运  吴峰 《广西植物》2023,43(10):1921-1931
猴樟(Cinnamomum bodinieri)枝叶含有丰富的精油,是重要的园林绿化树种和经济树种,但目前有关猴樟基因组学的研究报道不多。为揭示猴樟叶绿体基因组特征及系统发育关系,该文基于高通量测序平台进行测序,从头组装了完整的猴樟叶绿体基因组,并对其基因组结构、基因构成及序列重复、密码子使用偏好性以及系统发育进行分析,结合樟亚科主要属物种叶绿体基因组数据构建系统发育树。结果表明:(1)猴樟叶绿体基因组全长152 727 bp,包括一对20 132 bp的反向重复(IRs)区、93 605 bp的大单拷贝(LSC)区和18 858 bp的小单拷贝(SSC)区,总GC含量为39.13%。(2)该基因组共编码127个基因,包括83个蛋白质编码基因(PCGs)、36个转运RNA基因(tRNAs)和8个核糖体RNA基因(rRNAs); 共鉴定出92个SSR位点,其中大部分是A/T组成的单核苷酸重复序列; 密码子适应指数(CAI)为0.166,有效密码子数(ENc)为54.68; 猴樟与近缘种的叶绿体基因组主要在IR区和2个SC区边界上存在一定的差异。(3)24种樟亚科植物的系统发育树显示,猴樟与樟树亲缘关系最近,同时支持了樟属-甜樟属分支(Cinnamomum-Ocotea Clade)、月桂属-新木姜子属分支(Laurus-Neolitsea Clade)、润楠属-鳄梨属分支(Machilus-Persea Clade)的建立。该研究丰富了猴樟遗传资源信息,进一步确定了樟亚科主要属的系统发育地位。  相似文献   

20.
川柿(Diospyros sutchuensis)为极小种群和国家重点保护野生植物,分布范围狭窄,种群数量极少。目前,川柿基因组信息缺乏,在柿属(Diospyros)中的系统亲缘关系不明确。该研究通过Illumina平台对川柿叶绿体基因组进行测序,应用Getorganellev1.7.3.4和PGA软件对基因组进行组装和注释,使用DnaSP6.12.03软件进行多序列对比分析,并使用REPuter、Tandem Reapeats Finder和MISA软件进行重复序列分析,使用CodonW1.4和EasyCodemL软件分别进行密码子偏好性和选择压力分析。同时,基于4个不同的叶绿体基因组序列数据集,使用IQtree软件分析川柿与11个柿属物种的系统发育关系。结果表明:(1)川柿叶绿体基因组全长157 917 bp,包含1对26 111 bp的反向重复区、大单拷贝区(87 303 bp)和小单拷贝区(18 392 bp),GC碱基含量为37.4%。(2)川柿叶绿体基因组共注释到113个基因,包括79个蛋白编码基因、30个tRNA基因和4个rRNA基因; 共检测到49个长重复序列、27个串联重复序列和34个简单重复序列; 蛋白编码基因中高频密码子31个,多数密码子末位碱基为A或U,编码亮氨酸的密码子使用最多; 基因组编码区比非编码区更为保守,10个高变热点区域可作为潜在的分子标记; 蛋白编码基因中有8个基因(ndhBndhGndhIrbcLrpoBpetBpetDrps12)受到正选择压力。(3)系统发育分析显示,川柿与老鸦柿(D. rhombifolia)和乌柿(D. cathayensis)亲缘关系最为密切,它们与海南柿(D. hainanensis)共同形成一个单系分支。该研究结果既为川柿及柿属种质资源鉴定、遗传多样性保护以及种群恢复等提供了叶绿体基因组资源,也为阐明川柿的系统进化提供了重要的分子信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号